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Abstract—Solar forecasting has emerged as a cost-effective tech-
nology to mitigate the negative impacts of intermittent solar power
on the power grid. Despite the multitude of deep learning method-
ologies available for forecasting solar irradiance, there is a notable
gap in research concerning the automated selection and holistic
utilization of multi-modal features for ultra-short-term regional
irradiance forecasting. Our study introduces SolarFusionNet, a
novel deep learning architecture that effectively integrates auto-
matic multi-modal feature selection and cross-modal data fusion.
SolarFusionNet utilizes two distinct types of automatic variable fea-
ture selection units to extract relevant features from multichannel
satellite images and multivariate meteorological data, respectively.
Long-term dependencies are then captured using three types of
recurrent layers, each tailored to the corresponding data modal.
In particular, a novel Gaussian kernel-injected convolutional long
short-term memory network is specifically designed to isolate the
sparse features present in the cloud motion field derived from
optical flow. Subsequently, a hierarchical multi-head cross-modal
self-attention mechanism is proposed based on the physical-logical
dependencies among the three modalities to investigate the coupling
correlations among the modalities. The experimental results indi-
cate that SolarFusionNet exhibits robust performance in predicting
regional solar irradiance, achieving higher accuracy than other
state-of-the-art models and a forecast skill ranging from 37.4% to
47.6% against the smart persistence model for the 4-hour-ahead
forecast.

Index Terms—Solar irradiance forecasting, multi-modal deep
learning, attention mechanism, optical flow.

I. INTRODUCTION

THE deployment of solar technologies, especially photo-
voltaic (PV), has increased significantly in recent years due
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to concerns about global climate change, supportive government
policies, and lower equipment costs. Despite the promise of solar
energy, the main challenge to its feasibility is its highly volatile
and intermittent nature. Consequently, accurate prediction of
solar irradiance and power production has become a crucial
requirement for stable operation of the electrical grid [1], [2].
Current solar forecasting applications focus mainly on solar
irradiance forecasting and solar power forecasting [3]. Solar
power forecasting is calculated from irradiance prediction data
and a range of possible predictors based on regressive models
or model chains [4], [5]. Therefore, solar irradiance prediction
is fundamental for solar power forecasting. In this research,
we focus on global horizontal irradiance (GHI) prediction. The
GHI is predominantly modulated by clouds, aerosols, and water
vapor through a sophisticated process of radiative transfer in
the atmosphere. The spatial and temporal variability of these
factors, especially cloud fields, makes the prediction of GHI
an exceptionally demanding endeavor [6]. Consequently, ac-
curately capturing cloud motions is essential for reliable GHI
forecasting.

In recent years, deep learning techniques have gained
widespread attention among solar engineers due to robust gen-
eralizability, efficient handling of unstructured data, and auto-
mated feature extraction [7], [8]. With the availability of a wide
range of satellite data, all-sky images, numerical weather predic-
tions (NWP), historical meteorological data, etc., deep learning
models for cloud dynamics extraction and solar forecasting show
promising performance [9]. Although all-sky images provide in-
formation on small-scale cloud cover dynamics, satellite images
provide not only information on local cloud cover dynamics but
also on the spatial dynamics of neighboring regions, providing a
robust data infrastructure for solar irradiance forecasting based
on deep learning models [6], [10], [11].

However, the efficient utilization of multi-modal data sources
to construct accurate prediction models is facing significant
challenges. Multi-modal data provide a huge number of input
features, which have complicated nonlinear relationships with
the prediction targets. Although the inclusion of certain features
can be beneficial in improving the accuracy of the prediction, the
input of redundant information not only wastes computational
resources but also negatively affects the accuracy of the predic-
tion [12]. Existing research generally tends to apply statistical
methods for feature selection, and then input the filtered features
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to deep learning models [7], [12], [13], [14]. For example, Nejati
et al. [12] calculated the correlation factor between the input
meteorological variables and solar irradiance based on the theory
of mutual information (MI) to predict solar power. Bouzgou
et al. [13] proposed a Wrapper Mutual Information Methodology
(WMIM) that integrates Extreme Learning Machine (ELM)
and MI to predict solar irradiance. This methodology performs
feature selection by optimizing the similarity function between
input variables. However, these statistically based feature se-
lection methods have some obvious limitations when used as
pre-processing steps in deep learning. Firstly, statistical-based
analysis methods usually rely on global features for similarity
calculations, which ignores local similarities between covariate
features and target features, leading to information redundancy
or inefficient use. Secondly, when the results of feature selection
are used as input for deep learning models, statistically based
feature selection methods do not adequately capture the complex
non-linear relationships between covariate features and predic-
tive targets. This oversight can lead to excessive redundancy
or insufficient information in the feature selection process, ulti-
mately compromising prediction accuracy.

Moreover, the effective fusion of multi-modal features is also
one of the significant challenges for solar irradiance forecast-
ing [15]. Complex coupling correlations are presented among
the multi-modal features. For example, optical flow signals
derived from the visible and infrared channels of satellite im-
ages reveal cloud trajectories and dynamic density information,
respectively, which are essential for refining cloud dynamics
based on satellite images [16]. Therefore, it is essential to extract
optical flow features as a distinct mode and integrate them with
multi-channel satellite images and multi-variable meteorologi-
cal data. However, there are fewer researches utilizing optical
flow features derived from satellite images as input sources, and
there are research gaps regarding algorithms for sparsity feature
extraction of optical flow signals at high temporal resolution.
Although Boussif et al. [11] and Liu et al. [17] utilized optical
flow signals derived from satellite images and all-sky images to
predict solar irradiance, the research did not explore in-depth the
critical role of optical flow signals in extracting cloud motion
features based on satellite images.

Two typical multi-modal feature fusion techniques are in-
cluded in deep learning-based solar forecasting: linear aggre-
gation [18], [19], and cross-attention mechanism fusion [11],
[17]. Ajith et al. [19] used a fully connected layer to concatenate
extracted features from infrared sky images as well as histori-
cal GHI. However, exploring the coupling correlation between
multi-modal features with linear aggregation is challenging.
Cross-attention mechanisms have excellent global information
search capabilities, which provide excellent techniques for min-
ing coupled correlations. Liu et al. [17] proposed a multi-
modal information fusion-based framework to encode historical
clear-sky GHI and all-sky images, subsequently, a cross-modal
attention mechanism was used to explore the coupled corre-
lations between the two modalities. Boussif et al. [11] used
the Crossformer architecture to combine satellite data features
and ground-based measurements for the prediction of day-ahead
solar radiation. However, vanilla cross-attention techniques are

typically used to fuse two modal features. When optical flow
signals are involved in the fusion process as a distinct mode, the
coupling correlation becomes more complicated. Theoretically,
the input data of the three modalities used in this work revealed
the following physical logical dependencies: first, the sparse
optical flow signals enable the predictive model to accurately
identify the cloud motion features in satellite images over time;
and second, the infrared and visualization channels of the satel-
lite images jointly provide the shape and structure features of
the clouds, which complement the deficiencies of ground-based
sensors in collecting cloud information. Therefore, how to ef-
fectively integrate optical flow signals, satellite image data, and
meteorological data, and accurately model the physical logical
dependencies between multi-modal features, posing a challenge
for multi-modal feature fusion.

To bridge the aforementioned research gaps, we propose an
end-to-end deep learning model called SolarFusionNet based
on the self-attention mechanism for automatic selection of
multi-modal features and cross-modal features fusion to enhance
regional ultra-short-term (i.e. from 10 minutes to 4 hours ahead)
solar irradiance prediction. To demonstrate the validity of Solar-
FusionNet, we performed experiments at four Baseline Surface
Radiation Network (BSRN) stations [20], and compared the
prediction results with the state-of-the-art (SOTA) benchmark
models. The main contributions are:
� We propose a novel automatic multi-modal feature selec-

tion and fusion framework to deeply explore the coupled
correlations among different modal features. The model
incorporates two automatic multi-modal feature selection
mechanisms, three specific Recurrent Neural Networks
(RNNs) for spatio-temporal feature encoding, and an atten-
tion mechanism-based cross-modal fusion strategy, aiming
to enhance the accuracy of regional solar irradiance predic-
tion with high time resolution (i.e. 10-minute resolution).

� To minimize information redundancy and maximize the
impact of relevant input variables, we introduce specialized
Meteorological Selection Units (MSU) and Spectral Selec-
tion Units (SSU). Utilizing the local information extraction
capability of convolutional operation and the gating mecha-
nism, the units are able to effectively maximize the weights
of the relevant input variables and minimize the weights of
redundant information.

� Optical flow signals derived from high time resolution
satellite images exhibit sparsity. To efficiently extract
features from sparse optical flow signals, we propose
a Gaussian Kernel-injected Convolutional Long Short-
Term Memory Network (GKConvLSTM). Adaptive ker-
nel weights are then computed using the normalized
local density values and a predefined Gaussian Kernel
(GK).

� A hierarchical multi-head self-attention mechanism is
proposed based on the physical-logical dependencies
among the three modalities for cross-modal feature cross-
fertilization and eliminates redundant information. Such
an approach aims to utilize the complementary strengths
of various features to enhance the overall prediction per-
formance.
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The remainder of the paper is organized as follows. Section II
describes the multi-horizon GHI forecasting procedure and the
multimodal data pre-processing method. Section III presents
the proposed SolarFusionNet. Experimental details and perfor-
mance evaluation are discussed in Section IV. Finally, Section V
provides the conclusion.

II. PRELIMINARIES

The focal objective of this work is the development of an inte-
grated framework for solar irradiance forecasting, utilizing op-
tical flow derived from satellite images, original multi-channel
satellite images and historical multivariate meteorological data
from various locations. In this section, we elucidate the mathe-
matical issues of multi-horizon GHI prediction utilizing multi-
modal data, as well as the pre-processing techniques employed
in the study.

A. Multi-Horizon GHI Forecasting With Multi-Modal Data

In GHI forecasting scenarios, the GHI clear sky index (CSI)
is usually selected as the primary prediction target to remove the
influences of seasonal patterns, thus improving the accuracy of
the forecast in a range of predictive methodologies [5]. The CSI
is calculated as:

CSIt =
GHIt

GHItcs
, (1)

where GHIcs refers to the GHI value under clear sky condition,
which can be derived from a physical or empirical clear-sky
model. Here, we use the Perez-Ineichen model to calculate GHIcs

[21], and set the CSI to 1 at night when GHIcs = 0.
Satellite images, optical flow signals derived from satellite

images, and ground measurements of various meteorological
data are utilized as inputs. Satellite images and optical flow
signals can provide information on cloud movements, water
vapor, and aerosol levels that are often inaccessible through
ground measurement stations. Thus, it is imperative to develop
a multi-modal data fusion model fq(·) to effectively fuse satel-
lite images X S ∈ RT×Cs×H×W , optical flow signals XOf ∈
R(T−1)×COf×H×W and meteorological data XM ∈ RT×Cts to
enhance the accuracy of end-to-end GHI predictions. Each batch
forecast takes the form:

Ŷi(t, τ) = fq

(
τ,Yt−k:t

i ,X t−k:t
Si

,X t−k:t
Ofi

,X t−k:t
Mi

,Si

)
, (2)

where, Ŷi(t, τ) indicates the predicted CSI of the τ -step-ahead
forecast at time t, Yt−k:t

i is the k-step labels of input batch, Si

indicates spatial information including the longitude, latitude,
and altitude of each location, as well as the geospatial data
within the satellite image coverage area. In line with other direct
methods, we simultaneously output forecasts for τmax time steps
(i.e., τ ∈ {1, . . . , τmax}). We integrate all multi-modal historical
information within a finite look-back window k, using CSI and
known inputs only up to and including the forecast start time
t (i.e., Yt−k:t

i = {Yt−k
i , . . . ,Yt

i }). The predicted CSI values
are then converted back to GHI for evaluation using (1) with
GHIt+Δt

cs .

Fig. 1. Geographical distribution of the four selected BSRN stations (triangle
symbols) in the updated Köppen–Geiger climate classification system [22].

B. Data Description and Pre-Processing

The following two types of datasets are utilized:
1) Time Series Data: Time-series of measured GHI, Beam

Normal Irradiance (BNI), Diffuse Horizontal Irradiance (DHI),
and meteorological parameters such as temperature, relative
humidity, and atmospheric pressure, were collected at 10-
minute resolution over 7-year (2016-2022) from four BSRN
stations [20], as shown in Fig. 1.

To ensure data quality and the robustness and reliability of the
deep learning model, rigorous quality control (QC) on the col-
lected measurements is performed using two filters (Extremely-
rare limits & Closure equation) [23]:⎡⎢⎣ −2 < GHI < 1.2E0n cos1.2(Z) + 50

−2 < DHI < 0.75E0n cos1.2(Z) + 30

−2 < BNI < 0.95E0n cos0.2(Z) + 10

⎤⎥⎦
[
|closr| < 8% for Z < 75◦ and GHI > 50

|closr| < 15% for 75◦ < Z < 93◦ and GHI > 50

]
.

In the above QC procedure, Z is solar zenith angle, E0n is
extraterrestrial irradiance on a surface normal to the solar ray,
|closr| = |GHI − (DNI cosZ + DHI)| is the difference between
measured and computed GHI.

2) Satellite Images: Multi-channel satellite images are ob-
tained from the Meteosat Second Generation Rapid Scan Ser-
vice (MSG-RSS) operated by EUMETSAT [24]. We selected
Rectified RSS images (level 1.5), which have spatial coverage
spanning a longitudinal range from−65◦ to 84◦, and a latitudinal
range from 16◦ to 70◦. The data product consists of satellite
images collected in 12 spectral wavelength channels (8in the
thermal infrared spectrum, 3in the visible spectrum, and 1in
the near-infrared spectrum, as shown in Table I). HRV repre-
sents the High Resolution Visible Channel, distinguished by its
precise spatial resolution of 1km. The remaining 11 channels
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TABLE I
AN OVERVIEW OF THE 12 SEVIRI CHANNELS [24]

are low-resolution channels with the spatial resolution of 3km.
Therefore, the HRV channel is excluded in this study to maintain
the consistency of spatial resolution across different satellite
image channels.

Satellite images with 10-minute resolution of VIS 0.6, VIS
0.8, WV 6.2, WV 7.3, and IR 10.8 are selected as the inputs. The
two channels in the visible spectrum, VIS 0.6 and VIS 0.8, could
provide cloud images during daytime. The chosen wavelengths
allow the distinction from the Earth’s surface of different cloud
types, as well as support the determination of the atmospheric
aerosol content. The two channels in the water-vapour absorp-
tion band, WV 6.2 and WV 7.3, provide the water-vapour
distribution for two distinct layers in the troposphere. These two
channels can also be used to derive atmospheric motion vectors
in cloud-free areas, and will support the IR 10.8 channel in the
determination of the height of semitransparent clouds [25], [26].
We initially trim the satellite images to encompass a latitudinal
span from −6.64◦ to 10.51◦ and a longitudinal stretch from
38.82◦ to 55.97◦ to cover the four BSRN sites, and reshape
satellite image size to 64×64. To facilitate our analysis, we con-
vert the satellite imagery from a geostationary projection to the
World Geodetic System 1984 (WGS 84) coordinate frame [11]
and perform standard deviation normalization in every channel.

III. METHODOLOGY

To address the challenges of ramp events in the GHI prediction
process, SolarFusionNet employs an automated feature selec-
tion strategy, augmented by an attention-driven mechanism, to
adeptly capture the cloud motion from satellite images. The
integration of these elements is crucial to increase the accuracy of
GHI predictions. Fig. 2 illustrates the framework of SolarFusion-
Net. First, we develop two distinct feature selection networks:
SSU and MSU, which are utilized to assess and prioritize the
importance of input features from multi-spectral satellite images
X S ∈ RT×Cs×H×W and meteorological data XM ∈ RT×Cts ,
respectively. Furthermore, the T V − L1 algorithm [27] is uti-
lized to derive optical flow signals for each spectral channel,
increasing spatial background details. Each optical flow channel
shares the same weight Wt as the corresponding satellite image
channel. Each dataset is encoded using encoders customized
for its respective modality. Meteorological features are encoded

Fig. 2. SolarFusionNet: Attention-driven multi-modal feature fusion frame-
work for GHI forecasting.

using the vanilla long-short-term memory (LSTM) network [28],
adept at capturing temporal dynamics. Satellite images benefit
from the spatial-temporal capabilities of the vanilla Convolu-
tional Long-Short-Term Memory (ConvLSTM) network [29],
which excels at interpreting visual patterns over time. Optical
flow signals are accurately encoded by a specialized GKCon-
vLSTM, which is specifically designed to integrate the nuances
of motion and spatial features. To effectively fuse multimodal
features, we propose a hierarchical multi-head cross-modal
self-attention mechanism. The following subsections describe
in detail the customized modules of SolarFusionNet.

A. Automated Multi-Modal Feature Selection Units

The intricate correlations between various meteorological
data and satellite channels are typically elusive, making it chal-
lenging to anticipate which variables are significant. To empower
the model with the ability to dynamically and autonomously
process multivariate features in a non-linear manner, we propose
two automatic feature selection units, MSU and SSU. Inspired
by the Temporal Fusion Transformer (TFT) [30], the MSU and
SSU, as depicted in Fig. 3, are designed to process historical
meteorological data and satellite spectral channels, respectively.
The units aim to improve the performance of the model by
enabling it to identify and utilize the most informative features
without manual intervention. In addition to clarifying which
variables are significant for the prediction task, the feature se-
lection process enables the model to eliminate extraneous inputs
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Fig. 3. (a) Meteorological Variable Selection Unit; (b) Spectral Selection Unit.

that can introduce noise and adversely impact the prediction
performance.

Without loss of generality, we present MSU as follows
(Fig. 3(a)). Let Si

w ∈ R1×w denote the transformed input of
the ith meteorological feature and w denote the length of the
input window, with

∑�mmax
1 Si

w being the flattened vector of the
meteorological features input �max. Each input vector Si

w is
fed through the designed 1-Dimensional Convolutional Residual
Unit (CRU1D) which performs the extraction of local tempo-
ral features from meteorological data, effectively avoiding the
omission of information.

CRU1D(Si
w) = LN(σ(conv1D(ε1))� conv1D(ε1) + Si

w)

(3)

ε1 = conv1D(ELU(conv1D(Si
w))), (4)

where, ELU is the Exponential Linear Unit (ELU) activation
function [31], ε1 ∈ Rw indicates output of intermediate layer,
LN represents standard layer normalization [32], σ(·) is the
sigmoid activation function, � is the element-wise Hadamard
product. To enhance modeling flexibility, we implemented gated
residual connections to selectively suppress any unnecessary
components. By employing a sigmoid activation function, it
is effective to suppress input features with minimal or no con-
tribution, while excluding extraneous inputs that potentially in-
troduce noise and negatively affect the prediction performance.

During training, dropout is applied before the gating layer and
LN.

EachSi
w is fed into the CRU1D for feature encoding in the time

window w of each input variable. Concurrently, an aggregate of∑�max

1 Si
w across all levels up to CRU1D undergoes a similar

encoding process. Subsequently, a softmax layer is employed
to assign trainable weights Vw to each meteorological feature,
and the feature filtering is completed by element-wise Hadamard
product, which helps establish a nonlinear relationship with the
target feature (CSI). The mathematical representation is given
by the following expression:

Vw = Softmax

⎛⎝CRU1D

⎛⎝�mmax∑
1

Si
w

⎞⎠⎞⎠ (5)

S̃i

w = CRUS̃i
1D(Si

w) (6)

S̃w =

�mmax∑
i=1

Vi
wS̃i

w. (7)

For SSU, the fundamental architecture of the MSU is retained;
however, to capture the temporal feature and spatial feature
nuances of each spectral channel within the input window,
we replace CRU1D in the MSU with CRU3D. In addition, a
global average pooling (GAP) layer is utilized to distill spatial
information more effectively before performing the softmax
operation. The framework of the SSU is depicted in Fig. 3(b),
the mathematical representation of the output, derived from
the features processed by the SSU, is given by the following
expression:

CRU3D(Bj
w) = LN(σ(conv3D(η1))� conv3D(η1) +Bj

w)

(8)

η1 = conv3D(ELU(conv3D(Bj
w))) (9)

Ww = Softmax

⎛⎝GAP

⎛⎝conv3D

⎛⎝�bmax∑
1

Bj
w

⎞⎠⎞⎠⎞⎠
(10)

B̃j
w = CRUB̃j

3D(Bj
w) (11)

B̃w =

�bmax∑
j=1

Wj
wB̃j

w. (12)

The meaning of each symbol is the same as for MSU.

B. Gaussian Kernal Injection Convolutional Long Short-Term
Memory Network

We observe that the optical flow signals derived from high-
temporal-resolution satellite images demonstrates sparsity. As
shown in Fig. 4, the sparsity becomes more pronounced as the
time intervals shorten. In the feature extraction process from op-
tical flow signals using the vanilla ConvLSTM, the conventional
convolution operation struggle to accurately extract key features
due to the limitation of local receptive fields when extracting
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Fig. 4. Optical flow signals with varying time intervals. In cases of high time
resolution, the cloud moves over a shorter distance or may not move at all,
resulting in sparse optical flow signals. As the time intervals increase, the sparsity
of the optical flow information gradually reduces.

Fig. 5. Gaussian Kernel injection ConvLSTM.

sparse features. Given that high time resolution (10 minutes)
cloud motion information primarily exhibits characteristics sim-
ilar to a low-frequency signal, which can lead to suboptimal
performance. To address the challenge, we introduce a novel
GKConvLSTM, as shown in Fig. 5.

The GK is well-known as a low-pass filter with anti-aliasing
properties, proficient at smoothing out high-frequency infor-
mation. Consequently, we apply a postprocessing step using a
predefined GK after the convolution operation within the Con-
vLSTM framework which can attenuate high-frequency noise
and thus smooth the input. To address the challenge of sparsity
and enhance computational efficiency, we develop an adaptive
GK weighting algorithm that dynamically adjusts based on the
feature map extracted from the pre-trained model. The approach
solves the sparsity problem by adjusting the weight of the kernel
according to the local density of the feature map.

The size and standard deviation σ of GK are deterministic
functions. A two-dimensional GK is formed by sampling a
Gaussian distribution in both dimensions:

k(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (13)

where k(x, y) indicates the x and y spatial dimensions in the
kernels. While the direct application of a predefined GK to

convolutional outputs is generally effective, which exhibits in-
efficiencies when applied to sparse optical flow signals [33].
To overcome this limitation, we leverage feature maps obtained
from a pre-trained model to calculate local densities. Subse-
quently, the adaptive kernel weights are calculated using the
normalized local density values with the predefined GK. Such
an adaptive filtering approach relies on the local density values,
thereby ensuring more efficient processing of sparse optical flow
information. The mathematical expressions are:

D(pi,j) =
1

k2s

ks−1∑
u=0

ks−1∑
v=0

f (i+ u, j + v) (14)

γi =
D (pi,j)−Dmin

Dmax −Dmin
(15)

θGσ
= γi · k(x, y), (16)

where D(pi,j) represents the local density values of the feature
map f(i+ u, j + v), γi is the standardized GK weights, θGσ

is the adaptive GK with standard deviation σ. The pre-trained
model used in this study is ResNet50 [34]. The mathematical
formula for the convolution operation in GKConvLSTM is:

hi = ELU(pool(θGσ
� (θw � xi))), (17)

where � represents the convolution operation, θw is the weight
of convolutional layer, xi represents the input tensor.

C. Hierarchical Multi-Head Cross-Modal Self-Attention
Mechanism

Optical flow and spectral satellite data, along with mete-
orological variables, have been processed by temporal fea-
ture extraction using GKConvLSTM, ConvLSTM, and LSTM,
respectively. However, effective integration of features from
various data sources presents a pressing challenge. To effec-
tively integrate features, we propose a hierarchical multi-head
cross-modal self-attention mechanism. Satellite, optical flow,
and meteorological features require patching and embedding of
spatial location information before feature fusion. Rotary Posi-
tional Embedding (RoPE) [35] is used to embed spatial location
information, encompassing latitude, longitude, and altitude for
each pixel of satellite images, as well as the location information
of each ground-level station.

The process of cross-modal feature fusion is conducted in
two primary stages. Initially, for the physical-logical relationship
between the optical flow features and the satellite image features,
the linear projection of the optical flow features is used as a
query (Qof ), where each Qof maps the dynamic properties in a
specific time and region. Meanwhile, the keys (Ks) and values
(V s) are the linear projections of the satellite image features,
which provide spatial cloud information. Each Qof is compared
with all Ks under the self-attention mechanism to compute the
attention scores between the features of the optical flow and
the features of the satellite image. By normalizing the attention
scores using softmax, these are subsequently used to weight the
corresponding V s. This means that the final output H̃1 not only
contains information about the optical flow, but also incorporates
highly correlated features of the satellite image. In this manner,

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 31,2025 at 08:37:44 UTC from IEEE Xplore.  Restrictions apply. 



JING et al.: SOLARFUSIONNET: ENHANCED SOLAR IRRADIANCE FORECASTING 767

SolarFusionNet is able to model the cloud information reflected
between the optical flow features and the satellite image features.
Equations (18) and (19) present the mathematical formulation
for the first stage.

Subsequently, the integrated output from the first stage is
further fused with the features derived from meteorological
variables to model the second physical-logical relationship.
Specifically, a linear projection of H̃1 is used as the query vector,
while the keys (Km) and the values (V m) are generated from
meteorological features. The purpose of H̃1 is to compare with
eachKm as a mechanism to assess the consistency of the spatial
dynamics of each particular region observed from satellites
with ground-based meteorological data in the related region.
By calculating the dot product between H̃1 and Km, attention
scores that reflect the correlation can be obtained. The score is
normalized by softmax to obtain the weights corresponding
to each Km. Using the weights, the corresponding V m (i.e.,
meteorological features) are weighted and summed to produce
a composite output. With the application of the self-attention
mechanism, SolarFusionNet is able to automatically identify
and emphasize the features that are most critical to predicting
solar irradiance, thus improving the accuracy and efficiency of
prediction. Equation (20) presents the mathematical formulation
of the algorithm for the second stage.

Each phase of the feature fusion process utilizes a modified
version of the self-attention mechanism [30] to enhance the
integration of information. A unified approach [30] is utilized
in which each head calculates the attention using identical in-
formation, with the outputs subsequently aggregated additively.
For the first phase:

Atten(Q,K,V ) = Softmax

(
QKT

√
dattn

)
V (18)

H̃1 =
1

mh

mh∑
h=1

Atten
(
QofW

(h)
Qof

,KsW
(h)
Ks

,V sW Vs

)
·W

˜H1
,

(19)

where W (h)
Qof

and W
(h)
Ks

are head-specific weights for keys and
queries, W Vs

are value weights shared across all heads, W
˜H1

are used for final linear mapping of first phase. Similarly, for the
second stage:

H̃2=
1

mh

mh∑
h=1

Atten
(
H̃1W

(h)
˜H1
,KmW

(h)
Km

,V mW Vm

)
·W

˜H2
,

(20)
where W

(h)
˜H1

and W
(h)
Km

are head-specific weights for keys and
queries, W Vm

are value weights shared across all heads, W
˜H2

are used for final linear mapping of second phase. Furthermore,
to facilitate residual concatenation, the features from each data
source are initially aligned dimensionally using a linear trans-
formation.

IV. PERFORMANCE EVALUATION

In this section, we describe the training procedure and eight
benchmarks that contribute to the comparative analysis of our
proposed framework. These models along with the proposed

TABLE II
HYPERPARAMETERS FOR SOLARFUSIONNET

model are trained using 5-year data from 2016 to 2020, while
data from 2021 are used for hyper-parameter tuning and data
from 2022 is used for performance evaluation. The experimental
results are then analyzed and discussed.

A. Training Procedure

To guarantee the fairness of the experimental evaluation
process, all experiments are carried out using a single GPU.
To mitigate overfitting during the training process, we imple-
mented early stopping protocols with the patience parameter set
to 5 epochs. All training procedures employ the Ranger [36]
optimizer with a weight decay of 0.05 and deploy the cosine
warmup strategy [37]. To enhance the performance of the model,
we conducted an extensive search for optimal hyperparameters
based on Optuna [38]. The chosen hyperparameters are shown
in Table II.

B. Benchmarks

To evaluate the effectiveness of the proposed model, we chose
eight benchmarks for comparison, including several SOTA
deep learning models designed specifically for prediction tasks:
Cross Video Vision Transformer (CrossViViT) [11], Multiple
Image Convolutional Long Short Term Memory Fusion Net-
work (MICNN-L) [19], FEDformer [39], Autoformer [40], and
TFT [30]. CrossViViT and MICNN-L are multi-modal fusion
models for predicting solar irradiance that leverages the same
inputs as SolarFusionNet. While the remaining three models can
only be used to predict time series, they only use historical mete-
orological data as input. The hyperparameter configurations for
each benchmark are established on the basis of guidelines from
the literature. The SolarFusionNetwof and SolarFusionNetws in-
dicate SolarFusionNet without optical flow as inputs and without
satellite images as inputs, respectively. Furthermore, we utilize
the widely used smart persistence model as benchmark [1],
which assumes CSI persist between time t and and time t+Δt,

ŷt+Δt

i = GHIt+Δt
cs · yti . (21)

Given the significance of time in temporal prediction scenarios,
we also incorporate hour-of-day and day-of-year as auxiliary
features for all of benchmarks.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT PREDICTION MODELS BASED ON FOUR BSRN STATIONS

C. Evaluation Metrics

To evaluate the performance of each predicion model, four
metrics are used: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), Normalized Root Mean Square Error
(nRMSE), and Forecast Skill (Sf). Sf is compares the RMSE
of the proposed model and the RMSE of the Smart Persistence
model.

MAE =
1

n

n∑
i=1

|yi − ŷi| (22)

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)2 (23)

nRMSE =

√
1
n

∑n
i=1(yi − ŷi)2

1
n

∑n
i=1 yi

(24)

Sf = 1− RMSEForecast

RMSESmartPersistence
, (25)

where yi is the observed values, ŷi is the prediction values, ȳ is
the mean of the observed values. In the training process, RMSE
is chosen as the loss function.

D. Comparison With Benchmark Models

To compare the models’ performance, the prediction error
metrics are calculated using only data from periods when
Z < 85◦ (i.e., data from night periods are excluded). The re-
sults of SolarFusionNet and the benchmarks are presented in
Table III. As shown, SolarFusionNet significantly outperforms
all benchmarks across the four subdatasets described in Sec-
tion II, demonstrating the superiority of SolarFusionNet for
ultra-short-term GHI forecasting. In terms of 10-minute-ahead
prediction, SolarFusionNet performs the best at the CAB, PAL,
and PAY sites, with RMSE of 70.45 W/m2, 69.37 W/m2, and
62.91 W/m2, respectively, and Sf of 0.360, 0.370, and 0.315, re-
spectively. The prediction accuracy of SolarFusionNet is slightly
lower than that of CrossViViT only for the CNR station, with
RMSE, nRMSE, MAE, and Sf of 62.98 W/m2, 0.166, 37.02
W/m2, and 0.301, respectively. The prediction accuracy of
SolarFusionNet gradually improves as the prediction horizon
increases at four BSRN stations, with Sf reaching a maximum of
0.540 for the 80-minute-ahead and 160-minute-ahead prediction
horizons. Notably, SolarFusionNet significantly outperforms the
sub-optimal model, CrossViViT, for the CAB, CNR, and PAL
sites over a 240-minute forecast horizon. Specifically, the RMSE
of the forecasts for these three sites is reduced by 7.72 W/m2,
10.26 W/m2, and 13.67 W/m2, respectively. For PAY site, the
prediction accuracy of SolarFusionNet is slightly less than that
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Fig. 6. Visualization results of SolarFusionNet and the benchmark models at
four sites with 240-minute-ahead prediction details. The unit of RMSE is W/m2.

of CrossViViT. Specific data show that SolarFusionNet achieves
a RMSE of 101.9 W/m2, nRMSE of 0.280, MAE of 75.84
W/m2, as well as a Sf of 0.374. Furthermore, it is evident
that the prediction accuracy of SolarFusionNet at the four sites
outperforms all the time-series prediction models.

In addition to statistical metrics, we employ a visualization
method to further evaluate the predictive capabilities of the
proposed model when compared to the benchmark models
(CrossViViT, Autoformer, Smart Persistence). Fig. 6 displays a
comparison of sample time series for ground truth data alongside
240-minute-ahead forecasts at four stations. SolarFusionNet has
been shown to demonstrate superior accuracy in predicting ramp
events. At the CAB site on June 14, 2022, SolarFusionNet
achieves a predicted RMSE of 117.8 W/m2, while the other three
benchmark models all have RMSEs greater than 150W / m2.
Despite the occasional lag effect in forecasting, SolarFusionNet
experiences such a phenomenon significantly less frequently
than the benchmark models.

E. Analysis of Multimodal Input Data

To more thoroughly explore the effects of satellite-derived
optical flow signals and multi-channel satellite images on the
prediction accuracy, we perform two comparison experiments
at the four BSRN sites. The experimental results have been
presented in Table III, the Sf of SolarFusionNetwof (with-
out optical flow data) exhibits an average decline of 6.44%,
10.49%, 11.65%, and 12.75% across four prediction horizons,
respectively. Similarly, the Sf of SolarFusionNetws (without
satellite data) shows more significant reductions, with averages
of 11.84%, 12.34%, 13.61%, and 16.65% across the same pre-
diction horizons, respectively, when compared to the SolarFu-
sionNet model. The results further demonstrate the significant
contribution of multi-channel satellite images and optical flow
signals in improving the accuracy of solar irradiance prediction.

Fig. 7. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under clear and cloudy conditions at four
BSRN stations.

Moreover, as the prediction horizon expands, the improvement
in prediction accuracy becomes more pronounced.

F. Comparison Under Different Weather Conditions

Since cloud is the main atmospheric constitute that affects
the available solar irradiance on the ground level, the predictive
performance of the models are evaluated by comparing the
forecasting accuracy under cloudy sky conditions [2], [14].
Specifically, the performance of models under cloudy skies
reveals their ability to handle solar variability. In this research,
we used the Bright-Sun clear-sky detection algorithm [41] to
categorize the data from the four BSRN sites into clear-sky
conditions and cloudy-sky conditions.

The performance of 240-minute-ahead GHI forecasting us-
ing SolarFusionNet, CrossViViT, Autoformer, and Smart Per-
sistence are presented in Fig. 7. In clear-sky conditions, the
prediction RMSE of the four models are similar, and only
Autoformer has a higher prediction RMSE at the PAY site.
SolarFusionNet achieves the highest prediction accuracy at the
CAB, CNR, and PAL sites under cloudy conditions, with a
maximum RMSE reduction of 11.12 W/m2 compared to the
sub-optimal model, CrossViViT. For the PAY site, the predic-
tion accuracy of SolarFusionNet is slightly lower than that of
CrossViViT, with a difference in RMSE of only 0.73 W/m2. The
trend in prediction accuracy for the four models under cloudy
conditions is consistent with the overall trend in prediction
accuracy shown in Table III, which is due to the predominance
of cloudy weather at the four sites throughout the year [20].
In general, the performance of SolarFusionNet is remarkable
under cloudy conditions, especially at the CAB, CNR and PAL
sites, which significantly improves the prediction accuracy. To
demonstrate the robustness of the SolarFusionNet model, the test
datasets from the four BSRN sites are divided into four seasons
according to meteorological criteria: spring (March to May),
summer (June to August), fall (September to November), and
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Fig. 8. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under different seasons at four BSRN sta-
tions.

winter (December to February). The 240-minute-ahead predic-
tion RMSE of the four models for each season are presented in
Fig. 8. SolarFusionNet has demonstrated superior performance
and stability at CAB, CNR, and PAL sites, especially during
summer months. At the PAY site, SolarFusionNet’s prediction
accuracy is slightly inferior to CrossViViT. The analysis reveals
the overall superior GHI prediction performance and robustness
of SolarFusionNet.

To comprehensively evaluate the solar irradiance prediction
performance of SolarFusionNet under various weather condi-
tions, we have performed a detailed interval division based on
CSI. The comparison results presented in Fig. 9 clearly reflect
the excellent performance of SolarFusionNet in different CSI
intervals. In the interval of low CSI values (0–0.3), which repre-
sents cloudy or low-sunlight conditions, SolarFusionNet shows
a significant advantage. In addition, SolarFusionNet performs
well at all four BSRN sites. The results not only highlight
SolarFusionNet’s superior ability to handle extreme weather
conditions, but demonstrate its strong potential to adapt to
different geographic locations and diverse climatic conditions.

G. Uncertainty and Robustness Analysis

To comprehensively investigate the prediction capacity of
SolarFusionNet, as suggested by Murphy and Winkler [42] and
Yang et al. [43], we utilize marginal distribution plots to analyze
SolarFusionNet, CrossViViT, Autoformer, and Smart Persis-
tence model in 240-minute-ahead GHI forecasts at CAB station.
The joint and marginal distributions of measured and predicted
GHI are depicted in Fig. 10. Compared to the benchmarks, the

Fig. 9. The comparison of GHI prediction using SolarFusionNet, CrossViViT,
Autoformer and Smart Persistence under different CSI intervals at four BSRN
stations.

Fig. 10. Joint and marginal distributions of measured and predicted GHI using
(a) SolarFusionNet, (b) CrossViViT, (c) Autoformer, and (d) Smart Persistence
when evaluated at CAB station. The contour lines show the 2D kernel densities.

joint distribution of SolarFusionNet exhibits better alignment
along the diagonal, which explains its smaller statistical errors.
The probability density of SolarFusionNet is below the diagonal,
indicating that the predicted GHI are generally lower than the
measured values. A detailed analysis of the 2D kernel density
contours for CAB reveals that the predicted values of SolarFu-
sionNet are slightly below the identity line for high irradiance
conditions, while the distribution of the predicted values tends
to be near the identity line at lower irradiance levels.

The histograms shown in Fig. 10 indicate the marginal dis-
tributions of observed values (on the top) and predicted values
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Fig. 11. Conditional distributions of 240-minute-ahead predicted GHI using
SolarFusionNet, CrossViViT, Autoformer, and Smart Persistence.

(on the right). The marginal distribution of the observed values
shows that the peaks are located in the region of lower GHI,
which suggests that the weather conditions at the CAB site
in 2022 are skewed toward cloudy for most of the time. The
predicted distributions for SolarFusionNet, CrossViViT, and
Autoformer all exhibit the peak, but these peaks are shifted
towards greater predictions compared to the measured values. In
contrast, the predicted distribution of Smart Persistence under-
goes a shift towards smaller predictions. Among the four models,
SolarFusionNet exhibits the smallest shift, and the predicted
value distribution closely matched the actual measurements.

Furthermore, Fig. 11 shows the conditional distributions to
investigate the conditional dependence between observations
and 240-minute-ahead predicted GHI using SolarFusionNet,
CrossViViT, Autoformer and Smart Persistence. It is evident
that when the measured GHI is smaller than 850 W/m2, the
peak of the local distribution of the predicted GHI of SolarFu-
sionNet is more consistent with the diagonal, which means that
the prediction accuracy of SolarFusionNet is higher. When the
measured GHI exceeds 850 W/m2, the deviation of the estimated
value from the actual value increases, leading to a decrease in
the accuracy of the prediction. In terms of the probability density
of the prediction error, when 250 W/m2 < GHI < 750 W/m2,
the corresponding ridge diagrams are narrower, reflecting higher
prediction accuracy.

H. Ablation Analysis

To elucidate the significance of each component, we con-
ducted three targeted ablation studies at the CAB station: we
omitted the SSU and MSU modules, substituted GKConvL-
STM with the vanilla ConvLSTM, and replaced the hierarchical
multi-head cross-modal self-attention mechanism with a linear
layer. Fig. 12 shows the results of the ablation experiments

Fig. 12. Comparison of GHI prediction error metrics for three ablation exper-
iments at CAB station.

in four different prediction horizons. It is shown that in the
10-minute-ahead and 80-minute-ahead forecasting, the SSU &
MSU components and the multi-head cross-modal self-attention
mechanism markedly affect the predictive accuracy of SolarFu-
sionNet. Specifically, the MAE was reduced by 6.99 W/m2 and
6.13 W/m2, while the RMSE experienced reductions of 2.17
W/m2 and 8.11 W/m2, respectively. In contrast, the replacement
of GKConvLSTM yielded more modest improvements, with a
decrease of 3.39 W/m2 in MAE and 0.81 W/m2 in RMSE.

Within the scope of longer forecast horizons, the implemen-
tation of GKConvLSTM exhibits a pronounced enhancement in
predictive accuracy. Compared to the performance of ConvL-
STM in extracting features from optical flow signals, the error
metrics of SolarFusionNet are significantly reduced by 7.35
W/m2 and 10.16 W/m2 for MAE and 9.31 W/m2 and 12.99
W/m2 for RMSE, respectively. This significant improvement
can be primarily attributed to the adaptive weight mechanism
of the Gaussian kernel, which exhibits superior proficiency in
smoothing extraneous random noise that intensifies with the
expansion of the predictive horizons. This enables the model to
achieve enhanced stability of the longer-term predictive capac-
ity. In this study, we also employ a convolutional feature insight
technique, Score Class Activation Mapping (Score-CAM) [44],
to visualize optical flow information captured by GKConvLSTM
and ConvLSTM, respectively, as illustrated in Fig. 13. It is
apparent that GKConvLSTM possesses a superior capability to
pinpoint pivotal features within the optical flow signals with
greater accuracy when compared with the vanilla ConvLSTM.

I. Variable Significance Analysis

We quantify the importance of each variable in different
modalities by analyzing the weights (Vw, Ww) extracted from
the automated multimodal feature selection units as described
in Section III-A. The results of the analysis of the importance
of the variables for the CAB station are depicted in Fig. 14. The
variable importance analysis of the spectral channels indicates
that the two visible channels, VIS 0.6 and VIS 0.8, hold the high-
est significance. This prominence is ascribed to the proficiency
of the VIS 0.6 and VIS 0.8 channels in delineating the contours
and configurations of cloud formations, coupled with their lower
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Fig. 13. Visualisation of the first layer GKConvLSTM and ConvLSTM on VIS
0.6 channel for optical flow features using ScoreCAM. The darker red colour of
the heatmap represents higher significance of the feature.

Fig. 14. Variable significance analysis at CAB station for 240-minute ahead
forecasting.

absorption of water vapor, rendering them particularly adept at
detecting lower cloud strata and fog.

The variable importance analysis conducted on meteorolog-
ical variables conclusively identifies historical CSI as the most
influential contributor. Furthermore, BNI and DHI also demon-
strate significant importance, with importance scores exceeding
0.1, which can be attributed to the direct physical relationship
with GHI. Conversely, the relative importance of pressure (P),
temperature (Temp), and relative humidity (RH) are discerned
to be comparatively marginal. Among these variables, pressure
registers the highest importance score of 0.0921. The temporal
features, day of the year (DoY) and hour of the day (HoD),
exhibit minimal importance, a circumstance attributable to ef-
fective normalization of time-periodic factors in GHI prediction,
achieved by the application of the clear-sky model.

V. CONCLUSION

The inherent uncertainty and intermittency of solar irradiance
significantly impact the integration of PV power into the grid.

Cloud movement is the primary cause of solar irradiance ramp
events, therefore, integrating multispectral satellite images, de-
rived optical flow information, and historical meteorological
data is deemed an effective method to improve the accuracy of
solar irradiance predictions. However, there have been limited
studies on developing an end-to-end deep learning model that
can simultaneously perform automatic selection and efficient
fusion of multimodal features for regional solar irradiance pre-
diction. This study introduces a deep learning model named
SolarFusionNet, which uses a self-attention-based architecture
that seamlessly integrates automatic multimodal feature selec-
tion and cross-modal fusion. Experimental results indicate that
SolarFusionNet is capable of achieving SOTA prediction per-
formance compared to advanced deep learning models. In the
240-minute-ahead prediction results, the Sf can reach 0.476, and
RMSE and MAE are reduced by 13.67 W/m2 and 13.50 W/m2,
respectively, compared to the suboptimal model.
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