Real-time prediction intervals for intra-hour DNI forecasts

Abstract

We develop a hybrid, real-time solar forecasting computational model to construct prediction intervals (PIs) of one-minute averaged direct normal irradiance for four intra-hour forecasting horizons: five, ten, fifteen, and 20min. This hybrid model, which integrates sky imaging techniques, support vector machine and artificial neural network sub-models, is developed using one year of co-located, high-quality irradiance and sky image recording in Folsom, California. We validate the proposed model using six-month of measured irradiance and sky image data, and apply it to construct operational PI forecasts in real-time at the same observatory. In the real-time scenario, the hybrid model significantly outperforms the reference persistence model and provides high performance PIs regardless of forecast horizon and weather condition.

Publication
Renewable Energy