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A B S T R A C T

Satellite data and satellite-derived irradiance products have been extensively used in solar forecasting to better
capture the spatio-temporal variations of solar irradiance. However, the potential advantages of using satellite-
derived irradiance and its improvements in solar forecasting have not been thoroughly explored. This work
proposes a deep learning model chain with two models, one for deriving more accurate spatial global horizontal
irradiance (GHI) estimates from satellite data, and the other for subsequently producing intra-day GHI forecasts
using the derived spatial GHI. To evaluate the efficacy of the proposed method, GHI forecasts using different
inputs are compared, namely, spectral satellite images (SAT), GHI estimates of the national solar radiation
database (NSRDB), and satellite-derived GHI using deep learning (SAT-DL). The results show that satellite-
derived irradiance products (NSRDB and SAT-DL) generally outperform SAT. The improved GHI estimates
of SAT-DL yield forecasts with lower normalized root mean square error (nRMSE), higher forecast skill,
better ramp forecasts and forecast distributions, when compared with NSRDB for the cases studied. However,
forecasting under frequent cloudy conditions is found to have enlarged nRMSE and compromised performance
in ramp analysis, and forecasts are biased under high- and low-irradiance conditions. Despite these challenges,
the deep learning model chain approach provides a novel framework for satellite-based solar forecasting that
can yield more accurate forecasts than the benchmark deep learning methods, which is beneficial to a wide
range of stakeholders in the solar energy sector.
1. Introduction

Renewables are expected to account for over 90% of the global
electricity expansion in the next years due to energy security concerns
and climate ambitions. The total capacity of solar photovoltaic (PV)
is set to surpass coal and become the world’s largest power source
over 2022–2027 [1]. Despite the aggressive acceleration in the installed
capacity, the operation and integration of solar power still face chal-
lenges because of its intermittency and uncertainty [2,3]. To address
the issues associated with solar variability, solar forecasting could be
one of the solutions [4,5]. Indeed, solar forecasting could be cost-
effective, with the aim to support system management and scheduling
to meet the changing demand and thereby mitigate the variability of
solar power by providing predictions up to a few days ahead [5].
Generally, solar forecasting refers to both solar irradiance forecasting
and solar power forecasting [6]. As indicated by the names, the former
is focused on irradiance quantities such as global horizontal irradiance
(GHI) or direct normal irradiance (DNI), while the latter is related
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to the power output of PV or concentrated solar power systems. It is
paramount to have accurate irradiance forecasts to get solar power
forecasts with high quality [7], using either a data-driven approach or
a physical model chain [5,8].

In solar forecasting, one of the salient features of solar irradiance is
the two-frequency pattern (i.e., yearly and diurnal cycles). Therefore, a
clear-sky model that estimates the ground-level irradiance under cloud-
free conditions is usually required to remove the seasonality [9,10].
The spatio-temporal nature, as another important feature of solar ir-
radiance, should also be considered in solar forecasting models by
integrating available spatio-temporal information [5]. In fact, solar
forecasts based on spatio-temporal inputs have demonstrated to be
more beneficial than forecasts based solely on local measurements [11,
12]. This performance enhancement stems from the improved repre-
sentation of cloud dynamics, as clouds are the primary contributors
to solar variability [13]. Three main methods can be used to obtain
the spatio-temporal data in solar forecasting [5], namely, sky images
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Nomenclature

Abbreviations

ABI Advanced Baseline Imager
BiLSTM Bidirectional long-short-term memory
BON Bondville
CNN Convolutional neural network
CSI Clear-sky index
DHI Diffuse horizontal irradiance
DNI Direct normal irradiance
DRA Desert Rock
FPK Fort Peck
FRI False ramp index
GAN Generative adversarial network
GHI Global horizontal irradiance
GHIcs Clear-sky global horizontal irradiance
GOES Geostationary Operational Environmental

Satellites
GRU Gated recurrent unit
GWN Goodwin Creek
LSTM Long-short-term memory
MBE Mean bias error
nMBE Normalized mean bias error
nRMSE Normalized root mean squared error
NS Irradiance forecasts using NSRDB
NSRDB National Solar Radiation Database
NWP Numerical weather prediction
PSU Pennsylvania State University
PV Photovoltaic
QC Quality control
RDI Ramp detection index
RMI Ramp magnitude forecast index
RMSE Root mean squared error
SAT Spectral satellite images
SAT-DL Satellite-derived irradiance using deep

learning
SDL Irradiance forecasts using SAT-DL
SP Smart persistence
SURFRAD Surface Radiation Budget Network
SXF Sioux Falls
TBL Table Mountain
UTC Coordinated Universal Time

Notations

�̄� Mean of observations
𝒙 Spatio-temporal input of satellite data
◦ Degree
𝛥𝑡 Forecast horizon
𝐼 CSI forecast
𝜆 Wavelength
E Deep learning satellite-to-irradiance model
F Deep learning solar irradiance forecasting

model
P Physical satellite-to-irradiance model
𝜃𝑧 Solar zenith angle
�̃� Normalized value at each pixel of satellite

images
𝑓 Forecast
2

𝐿 The intensity of a pixel in the satellite image
𝑁 Number of data points
𝑁𝐹𝑁𝑅 Number of false predicted ramps
𝑁ℎ𝑖𝑡 Number of detected ramps
𝑁𝑚𝑖𝑠𝑠 Number of missed ramps
𝑁𝑟 Number of ramps
𝑁𝑇𝑁𝑅 Number of true predicted no-ramps
𝑜 Observation
𝑜ffset Add offset
𝑅2 Coefficient of determination
𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 Radiance received by the satellite sensor
𝑟𝑎𝑤 Packed-scaled value of radiance
𝑠𝑐𝑎𝑙𝑒 Scale factor
𝑡 Time

Subscripts

𝑓 Forecast of interest
𝑝 Perfect forecasts
𝑟 Reference forecast
𝑡 Time

Superscripts

𝑏 Spectral band

for intra-hour forecasting [4], satellite measurements for intra-day
forecasting [14], and numerical weather prediction (NWP) data for
day-ahead forecasting [5].

The utilization of remote-sensing data is one of the advanced aspects
of intra-day solar forecasting [5]. Geostationary satellites, such as
Geostationary Operational Environmental Satellites (GOES), Meteosat,
and Himawari, collectively offer a coverage of all areas within latitudes
of ±60◦. Modern geostationary satellites provide much finer data in
both spatial and temporal resolutions with more spectral bands. For ex-
ample, the GOES-16 satellite, with its 16 spectral channels, can provide
data at a temporal resolution of 5-min, and the spatial resolution ranges
from 0.5- to 2-km. The advancement in remote sensing technology
has substantially contributed to the development of satellite-derived
irradiance products, with the spatio-temporal resolution improved to
2-km and 5-min [15,16]. To this end, spatio-temporal satellite images
and satellite-derived irradiance products have become essential data
sources for solar forecasting [5,17,18].

1.1. Related work

Given the inherent spatio-temporal nature of solar irradiance, it is
more likely that high-accuracy forecasts can be produced by incorpo-
rating spatio-temporal information [5]. On this account, satellite data
and satellite-derived irradiance products have been extensively used in
solar forecasting, either as the entire exclusive input or as a part of the
inclusive exogenous inputs. Some insights regarding the use of satellite
data and/or satellite-derived products for intra-day solar forecasting are
summarized as follows.

Satellite data used in solar forecasting can be from one single chan-
nel [19,20], two visible channels [14], or multiple visible and infrared
channels [21,22]. Satellite data of visible channels are primarily used
to derived cloud index maps [14,19], which are used to predict future
cloud information. The methods for cloud motion prediction can be
physical (e.g., optical flow [14]) and data-driven (e.g., deep learn-
ing [23]); the former is based on cloud advection and extrapolation,
while the latter is to forecast the cloud index maps with deep learning

methods. The irradiance forecasts can then be obtained from the cloud
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forecasts using the Heliosat method [14,24]. The usage of data from
multiple spectral channels is to account for the modulation effect of
clouds on solar radiation. In such cases, multiple spectral satellite
data can be used by machine/deep learning models [21,25] to predict
the irradiance directly or by a physical classification method [22]
to determine the cloud type and subsequently generate irradiance
forecasts.

Forecasting methods can be semi-empirical [14], deep learning
based [12,21], or a hybridization of both [26]. The semi-empirical
method mainly focuses on the determination of cloud dynamics using
cloud motion analysis based on optical flow [14,24], and the clear-sky
irradiance is quantified by a clear-sky model [14]. Deep learning can
be applied to detect cloud motion and directly produce forecasts using
data of multiple satellite channels [21] or satellite-derived irradiance
over the target region [12]. The hybridized method combines deep
learning and optical flow to extract feature maps of clouds using
infrared satellite images [26].

As an important input for intra-day solar forecasting, the used
satellite-derived irradiance products can be based on semi-empirical
models [27] or physical models [28,29]. Similar to satellite data,
satellite-derived irradiance can also provide spatio-temporal infor-
mation in solar forecasting [27,28]. The semi-empirical satellite-to-
irradiance method relies on the Heliosat model that empirically deter-
mines the cloud attenuation with historical satellite measurements [27];
In contrast, the physical method applies radiative transfer models to
retrieve solar irradiance from satellite-derived atmospheric proper-
ties, exemplified by the National Solar Radiation Database (NSRDB)
[28]. The use of satellite-derived irradiance products can avoid the
complexities associated with estimating cloud properties from various
satellite spectral channels [12]. Therefore, satellite-derived irradiance
maps (e.g., NSRDB) can be used to predict future solar irradiance maps
and PV power for an entire region [30].

Satellite data or satellite-derived irradiance products can be used
as the single exogenous input [14,29] or a part of the inclusive in-
puts [27,31]. For example, satellite or satellite-derived data can be
used as the only input to derive and predict future cloud field and
thus solar irradiance [14,29], where solar power can be obtained using
the irradiance-to-power conversion [30,32]. To further improve the
forecasting performance, some other types of data including on-site
measurements of solar irradiance or power [26,27], meteorological
information [18], NWP products [27], and sky images [31] are used
as additional inputs for solar forecasting.

Solar forecasts can be deterministic [21] or probabilistic [29]. So
far, studies on solar forecasting are more focused on deterministic fore-
casts that offer single ‘best-guess’ values, either using satellite data [21]
or satellite-derived irradiance products [12,27]. On the other hand,
probabilistic forecasts that quantify the uncertainty in the forecasting,
provide valuable information for solar energy projects and therefore
have attracted more attention in the field [5]. Both satellite images
and satellite-derived irradiance can be used to produce probabilistic
forecasts [29,31].

1.2. Motivation and contributions

Satellite data and satellite-derived irradiance are widely used as
inputs for intra-day solar forecasting with deep learning. However,
when it comes to the selection of spatio-temporal inputs (i.e., satellite
data or satellite-derived irradiance) for intra-day solar forecasting,
there has been no clear determination regarding which type of spatio-
temporal data has the potential to produce more accurate forecasts.
For instance, Nielsen et al. [23] claimed that satellite data is advan-
tageous compared to satellite-derived irradiance products, while Pérez
et al. [12] suggested that satellite-derived irradiance products are more
beneficial than satellite data from multiple spectral bands. Therefore,
there has been a dearth of study to investigate what spatio-temporal
3

inputs are more beneficial for intra-day solar forecasting.
Furthermore, in our recent study [16], spectral satellite images from
GOES-16 and deep learning algorithms were applied to estimate both
GHI and DNI with a spatio-temporal resolution of 2-km and 5-min at
ground level. The results show substantial improvements in accuracy
when compared with NSRDB [33], which is considered as the state-of-
the-art in satellite-based solar irradiance estimation. Therefore, another
research question arises as to whether the satellite-derived irradiance
products with improved accuracy (i.e., satellite-derived irradiance by
deep learning (SAT-DL)) could lead to more accurate solar forecasts. To
address this question, a deep learning model chain method is proposed
to improve intra-day solar forecasting using spectral satellite data. The
deep learning model chain consists of two deep learning models: one is
to obtain spatial GHI estimates with improved accuracy from spectral
satellite images, and the other is to subsequently produce forecasts
based on the improved spatial GHI estimates. The deep learning model
chain provides a novel framework for satellite-based solar forecasting
compared to the existing forecasting methods in the literature. The
efficacy of the proposed method is evaluated by comparisons with an
end-to-end deep learning model and a hybrid physical-deep learning
model. The major contributions of this work are summarized as follows:

• The usage of spectral satellite data and satellite-derived irradi-
ance products in deep learning-based intra-day solar forecasting
are compared, at the spatio-temporal resolution of 2-km and
5-min. This comparison provides valuable insights into the selec-
tion of satellite-based spatio-temporal inputs for solar irradiance
forecasting.

• The advantages of satellite-derived irradiance products with im-
proved accuracy for solar irradiance forecasting are investigated
and quantified. While initially developed for more accurate so-
lar irradiance estimation at a single location, the deep learning
method based on spectral satellite data [16] is extended for
regional applications.

• A deep learning model chain is proposed for intra-day solar
irradiance forecasting using spectral satellite data. This model
chain comprises two models: one improves spatial GHI estimates
from spectral satellite measurements, and the other subsequently
generates GHI forecasts based on these improved estimates. The
deep learning model chain is benchmarked against an end-to-
end deep learning model that uses spectral satellite data, and a
hybrid physical-deep learning model that employs spatial NSRDB
estimates.

• The deep learning model chain approach provides a novel frame-
work for satellite-based solar irradiance forecasting. This frame-
work has the potential to incorporate more sophisticated deep
learning architectures to further improve the accuracy of both
satellite-derived irradiance products and intra-day solar irradi-
ance forecasts.

The rest of this work is structured as follows: Section 2 describes
the data and the methods, where data acquisition and pre-processing
procedure are presented in Section 2.1, the utilization of the SAT-DL
product is detailed in Section 2.2, the forecasting setup is presented
in Section 2.3, and the performance evaluation methods for forecasts
is presented in Section 2.4. The forecast results are quantitatively and
qualitatively evaluated and compared in Section 3, and the implications
are discussed in Section 4. Finally, Section 5 summarizes the key
findings of this study.

2. Data and methods

This section describes the data and methods utilized for solar irradi-
ance forecasting. As shown in the methodology flowchart (see Fig. 1),
lagged spectral satellite images and two satellite-derived irradiance
products are used as three alternative inputs for intra-day solar irradi-
ance forecasting from 15 min to 180 min ahead. The raw satellite data

are from several selected spectral bands of GOES-16, while datasets
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Fig. 1. The methodology flowchart of satellite-based solar irradiance forecasting with different methods.
Table 1
A summary of the publicly available data used in this work.

Data type Description Time period (year)

SURFRADa Irradiance measurements On-site measurements of solar irradiance 2019, 2020
GOES-16b Satellite measured radiance Radiance of eight selected spectral bands 2019, 2020
NSRDBc Derived ground-level irradiance Satellite-derived irradiance with a physical model 2020

a Available at https://gml.noaa.gov/grad/surfrad/, can be downloaded with the SolarData [35].
b Available at https://registry.opendata.aws/noaa-goes/, can be download with the GOES-2-go [36].
c Available at https://nsrdb.nrel.gov/, can be downloaded with the SolarData [35].
of NSRDB and SAT-DL are satellite-derived irradiance products from
raw satellite measurements. The main difference between NSRDB and
SAT-DL is that the former applies a physical solar model (radiative
transfer model) to derive irradiance, while the latter employs a deep
learning method. The labels are ground measurements (i.e., GHI) at the
location centered in the domain of the satellite images. The inputs and
corresponding labels are divided into subsets of training, validation,
and testing to train and evaluate deep learning-based forecast model.

The accuracy of irradiance predictions using the three alternative
inputs is evaluated against ground measurements. Note that SAT-DL is
obtained from spectral satellite images with deep learning, therefore,
using spatial SAT-DL irradiance estimates as inputs for another deep
learning model forms a deep learning model chain. The end-to-end
deep learning model using raw satellite measurements and the hybrid
physical-deep learning model based on NSRDB are used as benchmarks.
Detailed descriptions of data pre-processing, the deep learning model
chain, and the development and optimization of the forecasting model
are presented in the following subsections.

2.1. Publicly available data

Publicly available data used in this study include ground-level ir-
radiance measurements, spectral satellite images, and satellite-derived
irradiance products. Ground-level measurements are from the Surface
Radiation Budget Network (SURFRAD) stations [34]. Satellite images
are from GOES-16, but only a subset of spectral bands are selected [16].
Satellite-derived irradiance products are from NSRDB [33]. A brief
summary of the publicly available data used is presented in Table 1.
4

2.1.1. Solar irradiance measurements from SURFRAD
SURFRAD is a network of seven stations located in five different

climatological zones across the contiguous United States. As one of
the radiation networks with the highest data quality in the world,
SURFRAD has supported widespread applications and research since
its establishment in 1995 [34]. Data from all seven stations are used,
namely, Bondville (BON), Desert Rock (DRA), Fort Peck (FPK), Good-
win Creek (GWN), Pennsylvania State University (PSU), Sioux Falls
(SXF), and Table Mountain (TBL). Since SURFRAD data have been
extensively utilized and described in the literature and our previous
works [10,15,37], the details will not be reproduced here.

Raw measurements, including GHI, DNI, diffuse horizontal irradi-
ance (DHI), and solar zenith angle in 2019 and 2020 at all seven
stations are downloaded. Although GHI is the forecasting target, other
data of DNI, DHI, and solar zenith angle are required for quality control
(QC). The pre-processing of SURFRAD data includes: (i) QC to remove
unreasonable data points, (ii) data aggregation, and (iii) normalization,
described as follows:

• QC: Several QC procedures are considered, including the ex-
tremely rare limit test and the three-component closure test [35].
These QC steps are based on the theoretical aspects detailed by
Long and Shi [38].

• Data aggregation: After QC, the 1-min averaged GHI measure-
ments are aggregated to 5-min intervals and indexed in Coordi-
nated Universal Time (UTC). This is to be compatible with satel-
lite data in the temporal resolution of 5-min. Due to the high air-
mass effect at solar mornings and evenings, all GHI measurements
for a solar zenith angle of 85◦ or greater are discarded [37].

https://gml.noaa.gov/grad/surfrad/
https://registry.opendata.aws/noaa-goes/
https://nsrdb.nrel.gov/
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Table 2
The detailed information of the selected ABI spectral bands of GOES-16 [40].

Band 𝜆 [μm] Center 𝜆 [μm] Resolution [km] Type Valid range Scale factor Add offset

1 0.45–0.49 0.47 1 Visible 0–1022 0.8121 −25.9366
3 0.846–0.885 0.865 1 Near-Infrared 0–1022 0.3769 −20.2899
4 1.371–1.386 1.378 2 Near-Infrared 0–2046 0.0707 −4.5224
5 1.58–1.64 1.61 1 Near-Infrared 0–1022 0.0958 −3.0596
6 2.225–2.275 2.25 2 Near-Infrared 0–1022 0.0301 −0.9610
7 3.80–4.00 3.90 2 Infrared 0–16382 0.0016 −0.0376
9 6.75–7.15 6.95 2 Infrared 0–2046 0.0225 −0.8236
11 8.30–8.70 8.50 2 Infrared 0–4094 0.0334 −1.3022
• Normalization: It is suggested to remove the double-seasonal
pattern of solar irradiance prior to forecasting [5]. On this point,
the 5-min GHI measurements are normalized using clear-sky GHI
(GHIcs) estimations in NSRDB to generate clear-sky indexes (CSI
= GHI/GHIcs), which are used as labels in the forecasting model.

.1.2. Spectral radiance data from GOES-16
GOES-16 is one of the GOES-R series geostationary satellites located

t the operational longitude of 75.2◦W during the investigated period of
his study. The Advanced Baseline Imager (ABI) has 16 spectral bands
two visible, four near-infrared, and ten infrared channels), which
onitor the Earth with much finer temporal and spatial resolutions

ompared with its predecessors. Among the available spectral bands,
nly a subset is selected as shown in Table 2. This is because some
ands are highly correlated [16], and using only the representative
atellite bands can improve the learning efficiency by eliminating re-
undant features [16]. 5-min GOES-16 images of eight selected spectral
ands in 2019 and 2020 are extracted and georeferenced to the tar-
et SURFRAD stations. These images are sized at 11 × 11 pixels for
019 and 21 × 21 pixels for 2020, respectively. The pre-processing of
OES-16 data includes radiance conversion and normalization:

• Radiance conversion: This process converts the packed-scaled
value into radiance received by each band of GOES-16. The
radiance for each band is calculated using the scale factor and
add offset (see Table 2):

𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 = 𝑟𝑎𝑤 ∗ 𝑠𝑐𝑎𝑙𝑒 + 𝑜𝑓𝑓𝑠𝑒𝑡, (1)

where 𝑟𝑎𝑤 is the packed-scaled value, 𝑠𝑐𝑎𝑙𝑒 is the scale factor,
and 𝑜𝑓𝑓𝑠𝑒𝑡 is the add offset.

• Normalization: To remove diurnal effects and facilitate model
training, the spectral radiance data of each band is further nor-
malized by the band range (i.e., the minimum and maximum spec-
tral responses) and solar zenith angle. This is adopted from [39]
to weight each band equally:

�̃�𝑏
𝑖𝑗 |𝑡 = 1 −

𝐿𝑏
𝑖𝑗 |𝑡 − 𝐿𝑏

min

cos (𝜃𝑧|𝑡)(𝐿𝑏
max − 𝐿𝑏

min)
, (2)

where �̃�𝑏
𝑖𝑗 |𝑡 is the normalized value at each pixel in band 𝑏 at

time 𝑡, 𝐿𝑏
𝑖𝑗 |𝑡 is the measured radiance of that pixel, 𝜃𝑧|𝑡 is the

solar zenith angle at time 𝑡, 𝐿𝑏
min and 𝐿𝑏

max are the minimum and
maximum spectral responses of band 𝑏, respectively.

Note that the spectral bands have different spatial resolutions at
the sub-satellite point as shown in Table 2. To ensure the consistency
among selected bands, the bands with better resolutions are re-scaled
as 2-km. As a multi-band passive imaging radiometer, the radiance
received by ABI cannot theoretically be less than zero. Therefore, all
negative values are discarded. The end timestamp of each scan in UTC
time is used to index the image after rounding to the next nearest 5-min
interval. This is done to be compatible with GHI measurements and to
facilitate real-time applications.
5

2.1.3. Satellite-derived irradiance from NSRDB
The NSRDB is a widely accessed and publicly available database

that provides satellite-derived solar irradiance over the United States
and a growing number of international locations [33,41]. Data in
NSRDB includes broadband solar radiation of GHI, DHI, DNI, and their
clear-sky expectations. Meanwhile, there are also many other auxiliary
variables, such as solar zenith angle, cloud type, and meteorological
data. The NSRDB is serially complete with more than 20 years of cov-
erage, providing data in 30-min temporal and 4 km spatial resolutions.
Starting in 2018, the temporal and spatial resolutions of NSRDB are
further improved to 5-min and 2-km, respectively [41]. The NSRDB
is produced using a physical solar model, which is a two-step model
to compute solar radiation from satellite data (e.g., GOES-16) and
products of a number of other associations [33]. The validation of 5-
min irradiance data of NSRDB against SURFRAD measurements shows
that the new 5-min NSRDB has higher discrepancies due to its higher
temporal resolution [42]. Nonetheless, it is still a remarkable milestone
in solar irradiance modeling and resource assessment.

The NSRDB GHI values and their clear-sky expectations in 2020
are downloaded for 11 × 11 locations surrounding each SURFRAD
station. The temporal resolution is 5-min and spatial resolution is
2-km. Clear-sky GHI estimations in NSRDB are calculated using the
REST2 model [43], which has been repeatedly identified as one of
the clear-sky models with high-performance [9,44]. The pre-processing
of NSRDB mainly includes normalization. Similar to the removal of
double-seasonal effects of irradiance measurements, the GHI estimates
are normalized by the GHIcs to generate the CSI, which is used as one of
the alternative inputs. The data at the region of these 121 surrounding
locations can provide spatio-temporal information for solar forecasting
at the target stations.

2.2. Satellite-derived irradiance from SAT-DL

In our previous study [16], high spatio-temporal resolution spectral
satellite images of GOES-16 were used to estimate ground-level GHI
and DNI via deep learning. The results were verified against mea-
surements at SURFRAD stations and showed better performance in
estimating both GHI and DNI compared with NSRDB. Three main steps
were involved: (i) mapping spectral satellite images of representative
bands with ground observations, (ii) training and optimizing the deep
learning model, and (iii) obtaining irradiance estimates from new
satellite images. The deep learning model used in [16] employs con-
volutional neural networks (CNNs) [45], the attention mechanism [46]
and fully-connected dense layers.

The original deep learning model in [16] was developed for ground
irradiance estimates at a single location, which is centered in the
domain of satellite images with 11 × 11 pixels. As shown in Fig. 2(a),
the target is one of the SURFRAD stations (e.g., TBL), and the satellite
images cover the same region with the surrounding locations. The
target station can be anywhere as long as there are on-site irradiance
measurements available. Following the same methodology, the target
is expanded from one station to the 11 × 11 surrounding area with
121 locations. As shown in Fig. 2(b), selected spectral satellite images
of GOES-16 (see Table 2) with the size of 21 × 21 pixels are used to

obtain the GHI estimates for the whole region (11 × 11 pixels) via the
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Fig. 2. An illustration of regional solar irradiance estimations for the Table Mountain (TBL) station using spectral satellite images. (a) The target station and 11 × 11 pixel grid
of satellite images for single-station solar irradiance estimation. (b) The target station with 121 surrounding locations and the domain of used spectral satellite images for regional
solar irradiance estimation.
pre-trained deep learning model. Specifically, datasets in 2019 are used
to develop the pre-trained deep learning model for GHI estimation at a
single SURFRAD station using spectral satellite images (11 × 11 pixels)
and ground measurements. The pre-trained deep learning model is then
applied to obtain GHI estimates in 2020 for the whole surrounding
region (121 locations) by shifting an 11 × 11-pixel window over the
larger satellite images (21 × 21 pixels) as illustrated in Fig. 2(b). Note
that the model’s output is CSI of GHI normalized by the REST2 clear-sky
model (available in NSRDB). The whole 11 × 11 matrices of CSI values
are used as inputs for GHI forecasting at the target station. Therefore,
CSI outputs are not converted back to GHI estimates at this step.

Solar forecasting based on the SAT-DL irradiance thus forms a deep
learning model chain, i.e., spectral satellite data are converted to GHI
estimates by one deep learning model [16], and the obtained GHI
estimates are used subsequently to produce GHI forecasts using another
deep learning model. Satellite images and ground measurements in
2019 are used to train and validate the deep learning model for GHI
estimates (SAT-DL), while SAT-DL GHI estimates in 2020 are used as
inputs for solar irradiance forecasting.

The method to generate GHI estimates for a single location is effi-
cient to implement. Using the pre-trained deep learning model to obtain
GHI estimates over a large region could be more time-consuming;
therefore, larger areas around the target station are not considered.
Also, the pre-trained deep learning model is developed only using
ground data at the target stations, thus the accuracy might decrease
with the increased distance, especially for locations that are too far
away. Considering that the surrounding terrain and climate feature
would not differ significantly for a certain location, it is reasonable to
assume that GHI estimates of SAT-DL have lower discrepancies than
those of NSRDB in the area around the SURFRAD stations. In a more
general case, one could change the size of the surrounding area to
investigate the effects on GHI estimates and forecasting, but this is not
considered in this study.

2.3. Forecasting method

Deep learning is widely used in solar forecasting and resource
assessment applications using satellite images and related products. The
deep learning forecasting model applied in this work employs CNNs,
the attention mechanism, and fully-connected dense layers based on
Tensorflow [47]. Compared with the deep learning irradiance estima-
tion model in [16], the main differences are the sources of inputs
6

and the number of outputs. As illustrated in Fig. 3, three different
datasets are used as inputs to generate CSI forecasts for lead times
ranging from 15 to 180 min. As mentioned, the deep learning model
chain can obtain more accurate spatial GHI estimates from satellite
data and subsequently produce GHI forecasts using the spatial GHI
estimates of SAT-DL. The end-to-end deep learning model only employs
spectral satellite data as inputs, while the hybrid physical-deep learning
model applies GHI estimates of NSRDB as inputs. The inputs are lagged
spectral satellite images or satellite-derived GHI matrices in the past
hour with the spatio-temporal resolution of 2-km and 5-min, while the
outputs are 5-min averaged CSI forecasts for various forecast horizons.
For instance, the 5-min average means that the CSI forecast at 𝑡 =
12:00 is the averaged value over times 11:58, 11:59, 12:00, 12:01, and
12:02 [42].

Note that the input sizes of satellite-derived GHI matrices and satel-
lite images are different, the satellite-derived GHI matrices are in the
size of 11 × 11 surrounding locations as shown in Fig. 2(a), while the
spectral satellite images are in the size of 21 × 21 pixels as illustrated
in Fig. 2(b). This is to perform a fair comparison among satellite images
and derived GHI products, since GHI estimates of SAT-DL are based on
the image size of 21 × 21.

Deep learning can be used to produce multiple CSI forecasts (a
multiple-output model) with forecast horizons (𝛥𝑡) up to 180 min
(i.e., 15, 30, 45, 60, 90, 120, 150, and 180-min). The end-to-end deep
learning model can be expressed as:

𝐼𝑡0+15, 𝐼𝑡0+30,… , 𝐼𝑡0+180 = F(𝒙𝑡0 ,𝒙𝑡0−5,… ,𝒙𝑡0−60), (3)

where 𝐼 denotes the CSI forecast, which can be converted back to
GHI by multiplying clear-sky GHI of REST2 at time 𝑡 + 𝛥𝑡; F is the
forecasting model; 𝒙 represents the spatio-temporal spectral satellite
measurements.

The hybrid physical-deep learning model is:

𝐼𝑡0+15, 𝐼𝑡0+30,… , 𝐼𝑡0+180 = F(P(𝒙𝑡0 ,𝒙𝑡0−5,… ,𝒙𝑡0−60)), (4)

where P is the physical model used to convert spectral satellite mea-
surements 𝒙 to spatial GHI estimations of NSRDB.

The deep learning model chain is then formulated as:

𝐼𝑡0+15, 𝐼𝑡0+30,… , 𝐼𝑡0+180 = F(E(𝒙𝑡0 ,𝒙𝑡0−5,… ,𝒙𝑡0−60)), (5)

where E is the deep learning model to derive spatial GHI estimates of
SAT-DL from spectral satellite measurements 𝒙.
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Fig. 3. The structure of deep learning models for multiple CSI forecasts using spectral satellite images or satellite-derived GHI products. The hyperparameters are optimized using
the KerasTuner, as shown in Table 3.
Fig. 4. The loss curves of the training and validation processes for GHI forecasting
based on satellite-derived irradiance using deep learning (SAT-DL) at the BON station.

Although the structure of the deep learning model F is similar
in different forecasting scenarios, the hyperparameters are different
for each spatio-temporal input. Forecasting models for each SURFRAD
station with different inputs are trained separately, and the optimal
hyperparameters are obtained using Bayesian optimization via the
KerasTuner [48] as shown in Table 3. To avoid overfitting and improve
the generalization ability of the forecasting models, L2 regularization
and Early Stopping techniques are applied as shown in Fig. 3 and
Table 3. Fig. 4 presents the loss curves during the training and valida-
tion processes for GHI forecasting using SAT-DL estimates at the BON
station. Note that the validation loss is less than the training loss due
to the L2 regularization. Since the forecasting model is developed using
data from year 2020, to better represent the yearly variability, data in
March, June, September, and December are utilized for testing, while
the rest of the datasets in 2020 are used as training and validation
subsets (in which 20% of the data is used for validation).

A diverse range of deep learning architectures, such as the long-
short-term memory (LSTM) network, transformers, and generative ad-
versarial networks (GANs), are suitable for solar forecasting with
7

Table 3
Hyperparameters shown in Fig. 3 for Bayesian optimization using the KerasTuner.

Hyperparameter Values

Optimizer Adam
Loss function Huber
Learning rate [1e−5, 1e−4, 2e−4, 5e−4, 1e−3, 2e−3, 1e−2]
x1 range(min = 16, max = 128, step = 2)
activation1 [relu, gelu, selu, tanh]
x2 range(min = 8, max = 64, step = 2)
activation2 [relu, gelu, selu, tanh]
x3 range(min = 8, max = 64, step = 2)
activation3 [relu, gelu, selu, tanh]
x4 range(min = 8, max = 64, step = 2)
activation4 [relu, gelu, selu, linear]
Early Stopping With the patience equal to 5

spatio-temporal inputs [49]. More sophisticated deep learning net-
works may indeed capture spatio-temporal features more effectively,
potentially enhancing the forecast accuracy. However, the focus of this
study is not to develop an advanced deep learning model architecture
but to evaluate the effectiveness of various spatio-temporal inputs for
intra-day solar forecasting. Therefore, CNNs have been selected for
their well-established ability to process spatial data. This choice aims
to maintain a consistent and efficient computational framework that
facilitates a fair comparison of spatio-temporal inputs, thereby isolating
the input variable as the primary subject of investigation. Neverthe-
less, the performance of the proposed deep learning model chain is
further evaluated through comparisons with several other deep learning
methods for satellite-based solar forecasting, including CNN-LSTM,
LSTM, bidirectional LSTM (BiLSTM), and gated recurrent unit (GRU).
Note that the proposed deep learning model chain is also designed to
establish a foundational framework for satellite-based solar forecasting.
This approach allows for the possibility of integrating more advanced
deep learning algorithms (such as GAN) into subsequent research to
potentially improve the forecasting accuracy further [21,50].

2.4. Performance evaluation of forecasts

As mentioned, the model outputs are CSI forecasts, which are con-
verted back to irradiance by multiplying the clear-sky irradiance at the
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Fig. 5. Some possible outputs of ramp forecasts. GHIcs denotes the clear-sky irradiance, 10% bounds define the upper and lower bounds on the threshold, 𝛥𝑡 is the forecast
horizon.
Source: Modified based on Fig. 2 in [51].
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predicted time stamps. Consequently, the final error evaluations and
visualizations are expressed in terms of irradiance [W/m2]. The eval-
uation metrics employed include the root mean squared error (RMSE)
and mean bias error (MBE), along with their normalized forms (nRMSE
and nMBE), to assess the overall forecasting accuracy. Additionally,
the coefficient of determination (𝑅2) is utilized to determine how
accurately the model reproduces the observed data. The evaluation
metrics are defined as follows:

RMSE =
√

1
𝑁

∑

(𝑓𝑖 − 𝑜𝑖)2, (6)

RMSE =

√

1
𝑁

∑

(𝑓𝑖 − 𝑜𝑖)2

𝑜𝑖
, (7)

MBE = 1
𝑁

∑

(𝑓𝑖 − 𝑜𝑖), (8)

MBE =
∑

(𝑓𝑖 − 𝑜𝑖)
∑

𝑜𝑖
, (9)

2 = 1 −
∑

(𝑓𝑖 − 𝑜𝑖)2
∑

(𝑜𝑖 − 𝑜𝑖)2
, (10)

where 𝑓𝑖 and 𝑜𝑖 are the pairs of irradiance forecasts and ground obser-
vations (i.e., GHI), 𝑜𝑖 is the mean of the observations, 𝑁 is the total
umber of data points compared.

The forecast skill is used to provide a relative measure of improve-
ent for a model’s prediction over that of a reference model, which

an be calculated based on RMSE:

S =
(

1 −
RMSE𝑓

RMSE𝑟

)

× 100%, (11)

where FS is the forecast skill, RMSE𝑓 is based on forecasts of the
evaluated model, and RMSE𝑟 is calculated using forecasts of a reference
model. In this work, smart persistence is used as the reference model,
which assumes the CSI at the current time 𝑡 remains unchanged over
the forecast horizon, as defined by:

CSI𝑡+𝛥𝑡 = CSI𝑡, (12)

where 𝛥𝑡 is the forecast horizon. The GHI forecast is then obtained by
multiplying the clear-sky irradiance at 𝑡 + 𝛥𝑡.

Solar irradiance exhibits huge variability with the rapid change of
clouds in the sky. The ramp analysis is used to evaluate the model’s
8

performance in capturing the ramp events in irradiance, which can
better support the integration of solar energy. A ramp event is defined
by the irradiance change in the time interval of [𝑡, 𝑡 + 𝛥𝑡] that exceeds
a threshold (e.g., 10% of current clear-sky irradiance [51]). Some
possible outputs of ramp forecasts are shown in Fig. 5. Following the
definitions in [51], three metrics are defined in the ramp analysis,
namely, ramp detection index (RDI), false ramp index (FRI), and ramp
magnitude forecast index (RMI) as defined by:

RDI =
𝑁hit

𝑁hit +𝑁miss
, (13)

RI =
𝑁FRP

𝑁FRP +𝑁TNR
, (14)

RMI = 1 −

√

√

√

√

√

∑𝑁𝑟
𝑖=1(𝑜𝑡𝑖+𝛥𝑡 − 𝑓𝑡𝑖+𝛥𝑡)

2

∑𝑁𝑟
𝑖=1(𝑜𝑡𝑖+𝛥𝑡 − 𝑜𝑡𝑖 )

2
, (15)

where 𝑁hit means the number of cases when ramps are detected (cases
(a) and (d) in Fig. 5), 𝑁miss means the number of cases when ramps
are missed (cases (b) and (e) in Fig. 5), 𝑁FRP means the number of
cases when ramp is forecasted but there is no ramp (Fig. 5(c)), 𝑁TNR
means the number of cases when ramp is not forecasted and is actually
not presented (Fig. 5(f)), 𝑁𝑟 is the number of ramp events, 𝑜 is the
observation and 𝑓 is the forecast. More details are available in [51].

3. Results

In this section, the performance of GHI forecasts using the devel-
oped deep learning model is evaluated and compared with different
inputs, namely, spectral satellite images (the end-to-end deep learning
model), GHI estimates from NSRDB (the hybrid physical-deep learning
model), and GHI estimates of SAT-DL (the deep learning model chain).
Three categories of evaluation are adopted: (i) forecasting accuracy in
terms of nRMSE and nMBE is presented in Section 3.1, along with the
comparison of 𝑅2 and forecast skill, (ii) the ramp analysis of irradi-
ance forecasts including ramp detection and magnitude forecasts, is
elaborated in Section 3.2, and (iii) distribution-oriented approaches for
verifying irradiance forecasts are detailed in Section 3.3. Meanwhile,
Section 3.4 details the comparison with several other deep learning
methods to further evaluate the performance of the proposed deep
learning model chain.
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Fig. 6. The nRMSE [%] of GHI forecasts up to 180 min at all the SURFRAD stations with different methods: smart persistence (SP), spectral satellite images (SAT), NSRDB GHI
stimates (NS), GHI estimates of SAT-DL (SDL).
Fig. 7. Same as Fig. 6, but for the comparison for nMBE [%] of GHI forecasts.
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.1. Forecast evaluation in terms of statistical metrics

The results of intra-day GHI forecasts using different spatio-
emporal inputs at all SURFRAD stations are presented in Fig. 6 (for
RMSE), Fig. 7 (for nMBE), and Fig. 8 (for 𝑅2). It is shown in Fig. 6
hat the forecasting nRMSE generally increases with the extension of
he forecast horizon regardless of used inputs. Deep learning models
enerally outperform the smart persistence model (SP) in terms of
RMSE, especially for longer forecast horizons (e.g., those longer
han 60 min). Furthermore, using satellite-derived GHI products (NS
nd SDL) typically yield better forecasts than using raw satellite im-
ges (SAT) in most cases, even though the region of raw satellite images
s much larger (see Fig. 2). When comparing the forecast results based
n satellite-derived irradiance products, using GHI estimates of SAT-DL
ypically produce forecasts with lower nRMSE than using those from
SRDB, as reflected by the comparison between NS and SDL in Fig. 6

or all SURFRAD stations.
Although satellite-derived products generally yield better GHI fore-

asts (in terms of nRMSE) than the forecasts based on raw satellite
9

mages, there are some site-specific differences across the SURFRAD
tations. For instance, at PSU, the nRMSE values of GHI forecasts in
ll forecast horizons are larger than at other stations, and SAT are
ore accurate than NS in most conditions. However, SDL still yields

he best results at PSU. When comparing the nMBE of GHI forecasts
see Fig. 7), apart from some site-specific divergences, there are also
ome differences across the forecast horizon, but no obvious trends are
bserved. In general, satellite-irradiance-based forecasts (NS and SDL)
end to have larger biases.

Among all the SURFRAD stations, GHI forecasts at GWN and PSU
ave comparatively larger nRMSE (see Fig. 6). Similarly, it is shown in
ig. 8 that the 𝑅2 values of GHI forecasts at GWN and PSU are relatively

lower, regardless of the forecasting methods used. The 𝑅2 values tend to
increase with the extending forecast horizon while there are some fluc-
tuations, especially at GWN, PSU, and TBL. When comparing between
the forecasting methods/inputs, GHI forecasts using satellite-derived
irradiance products (NS and SDL) generally have higher 𝑅2 values than
the forecasts using raw satellite images (SAT). Furthermore, SDL shows
superior overall performance when compared to both NS and SAT.

GHI forecast skills relative to the smart persistence model with
different inputs are further compared. As presented in Fig. 9, forecast



Energy Conversion and Management 313 (2024) 118598S. Chen et al.
Fig. 8. Same as Fig. 6, but for the comparison for 𝑅2 of GHI forecasts.
Fig. 9. Comparison of GHI forecast skills using different inputs across the forecast horizons up to 180 min at all the SURFRAD stations. A larger skill indicates a more accurate
forecast.
skill generally improves with the extension of forecast horizon no
matter which input is used. The increase of forecast skill is more
obvious for shorter forecast horizons (i.e., less than 60 min); while in
longer forecast horizons (e.g., longer than 60 min), fluctuations and
even decreases in skill can be observed. When comparing the forecast
skill when different inputs are used, SDL generally outperforms NS and
SAT at all the SURFRAD stations. It is observed that SDL also has higher
robustness compared to NS, as evidenced by the inferior performance
of NS at BON, TBL, and especially PSU (see Fig. 9).

3.2. Forecast evaluation in terms of ramp metrics

Since solar variability introduces great difficulties to the grid inte-
gration of solar power systems, especially when sudden fluctuations
present, it is also beneficial to perform ramp analysis of irradiance
forecasts to evaluate the model’s ability in predicting the variability.
As defined in Section 2.4, three indexes are used in ramp analysis,
namely, RDI to identify the successful rate of ramp detection, FRI to
evaluate the false ramp events, and RMI to quantify the magnitude of
ramp predictions.
10
Table 4
The amount of clear and cloudy periods (in percentage) in 2020 at all the SURFRAD
stations. The clear and cloudy conditions are labeled based on 1-min QC data and the
Bright-Sun clear-sky detection model [52].

BON DRA FPK GWN PSU SXF TBL

Clear periods [%] 27.83 49.88 22.89 27.44 14.64 28.50 29.38
Cloudy periods [%] 72.17 50.12 77.11 72.56 85.36 71.50 70.62

Table 4 shows the percentage of clear and cloud periods in 2020
at all the SURDRAD stations. It is shown that DRA has the most
occurrence of clear conditions, PSU has the most occurrence of cloudy
conditions, while the remaining sites show similar distributions of clear
and cloudy periods. It has also been observed in many studies that
DRA has a higher occurrence of clear periods, while PSU shows the
most frequent cloudy skies [37,39,53]. Therefore, the ramp analysis
is conducted exclusively at DRA, PSU, and SXF, which have been
chosen to represent a variety of cloudy conditions among the SURFRAD
stations, as illustrated in Fig. 10.
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Fig. 10. The selected representative stations of SURFRAD. DRA has the most clear periods, PSU has the most cloudy skies, and SXF is selected as it is in the geographical ‘middle’
of the rest stations.
Fig. 11. The ramp analysis for GHI forecasts using RDI, FRI and RMI at (a) DRA, (b) PSU and (c) SXF. For RDI and RMI, values closer to 100% are better. For FRI, smaller is
better.
As shown in Fig. 11, both RDI and FRI typically increase while
the RMI decreases with the extended forecast horizons. When cloudy
conditions become more frequent, the forecasting method generally
exhibits increased uncertainty in predicting ramp events. Specifically,
the RDI at PSU is lower than DRA and SXF, while the FRI at PSU
is comparatively larger. As for ramp magnitude forecasts, the RMI
at PSU is relatively higher than DRA and SXF, especially for longer
forecast horizons (except the use of NSRDB GHI as inputs, which will
be discussed in Section 4).

When comparing the inputs used for ramp forecasts, none shows
dominant performance over the others (see Fig. 11). All inputs exhibit
similar performance for ramp detection at DRA and SXF, while SDL
11
typically has a higher RDI at PSU, especially for longer forecast hori-
zons. Regarding the false ramps detection, DRA does not present huge
difference across the forecast horizons, while SXF shows some fluctu-
ations, but the general performance is still comparable. In contrast, at
PSU, NS tends to generate a relatively higher rate of false ramps across
all forecast horizons. Similarly, the ramp magnitude forecasts at DRA
and SXF do not differ greatly, while at PSU, NS could not produce
equivalent results to those of the other two types of inputs.

3.3. Distribution-oriented forecast evaluation

As suggested by Yang et al. [53], evaluation based solely on ac-
curacy is not always inclusive. Therefore, other aspects of forecasting
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quality, for instance, distribution-oriented approaches, should be in-
vestigated. In this section, the GHI forecasts based on three different
inputs (SAT, NS, and SDL) are verified against observations using
different distribution-oriented approaches, including joint, marginal,
and conditional distributions. The joint distribution enables the identifi-
cation of obvious outliers and unnatural patterns, while the verification
of marginal and conditional distributions are equivalent. More details
about joint, marginal, and conditional distributions can be found in [53,
54].

The joint and marginal distributions of GHI forecasts based on three
different inputs (i.e., SAT, NS, and SDL) against the measurements
at three SURFRAD stations (i.e., DRA, PSU, and SXF) over different
forecast horizons are shown in Fig. 12. Compared with PSU, the joint
distributions at DRA and SXF have higher probabilities around the
identity line, no matter which inputs are used. In addition to the
higher probability density under the diagonal, GHI forecasts at PSU
also show sparser distributions compared with those at DRA and SXF,
which indicates that larger divergences are presented (see Fig. 6). The
histograms in Fig. 12 represent marginal distributions (with forecasts
on the right and measurements on the top). If the forecasts had no
errors, the two marginal distributions would be the same. Fig. 12
shows different extents of discrepancies observed for various scenarios
regarding different locations and forecast horizons. When comparing
the inputs used for GHI forecasts, predictions based on SDL are dis-
tributed closer to the identity line than those based on SAT and NS,
especially at PSU. Moreover, at PSU, NS tends to produce larger forecast
errors, as evidenced by the more scattered density distributions. The
conditional distribution of GHI forecasts given observations at DRA,
PSU, and SXF are shown in Fig. 13, where forecasts are based on
three different inputs (i.e., SAT, NS, and SDL). Forecasts are considered
synchronized if the centroids of the distributions align with the identity
line [53]. It can be seen in Fig. 13 that the distributions of GHI
forecasts at DRA and SXF are more centered than those at PSU no
matter which input is used. Generally, the forecasts are associated
with positive bias in the low-irradiance range and tend to produce
under-predictions for high-irradiance conditions. It is more obvious to
notice the over-prediction (for low-irradiance conditions) and under-
prediction (for high-irradiance conditions) at PSU. When comparing
the forecasts based on different inputs, the results at DRA and SXF are
similar, the centroids of GHI forecasts from SDL are slightly closer to
the identity line compared with those from SAT and NS. However, at
PSU, forecasts based on NS show more divergences than those from
SDL, with wider forecast distributions for given measurements and the
sparser centroids dispersed around the identity line.

3.4. Comparison with other deep learning models

To further evaluate the performance of the deep learning model
chain for satellite-based solar forecasting, a comparative analysis with
other deep learning methods using the same inputs is conducted. The
compared methods include LSTM, BiLSTM, CNN-LSTM, and GRU, and
the used inputs are spectral satellite images. The involved SURFRAD
stations are DRA, PSU, and SXF to represent different cloudy conditions
(see Section 3.2). As presented in Fig. 14, SDL and CNN-LSTM, where
CNNs are adopted to process the spatio-temporal inputs, generally out-
perform LSTM, BiLSTM, and GRU. SDL and CNN-LSTM usually higher
forecast skills at all the three stations, while the 𝑅2 values of SDL and

NN-LSTM are higher at PSU, and comparable 𝑅2 values are observed
t DRA and SXF. Among the compared methods, SDL shows relatively
etter performance under different sky conditions at DRA, PSU, and
XF. For clear (at DRA) and low cloudy (at SXF) sky conditions, SDL
ypically has higher forecast skills with some fluctuations, and the
ivergences of 𝑅2 are not significant. When there are more clouds (at
SU) in the sky, the effectiveness of the deep learning model chain
ecomes more obvious, with comparatively higher forecast skill and
2

12

across all the forecast horizons.
4. Discussion

Based on the evaluation of GHI forecasts in terms of statistical
metrics (Section 3.1), NS and SDL generally show lower forecast dis-
crepancies than SAT, as shown in Fig. 6. However, deriving irradiance
products from spectral satellite images, whether using physical models
or deep learning methods, requires extra computation time, which
should be considered in operational forecasting applications. Given that
GHI forecasts from SDL have comparatively lower errors of nRMSE
(Fig. 6) and higher 𝑅2 values (Fig. 8) than those from NS, the pro-
posed deep learning model chain, which maps satellite data to spatial
irradiance and then to irradiance forecasts, is effective in improving
intra-day GHI forecasts. Regarding to the nMBE, GHI forecasts based
on NS and SDL have larger biases when compared to those from SAT,
as shown in Fig. 7. This could be due to that the loss function used
during the training process does not adequately account for the bias.
Despite the enlarged bias, satellite-derived irradiance products are still
valuable inputs for solar irradiance forecasting, since the bias could be
further corrected and refined using post-processing methods [55].

GHI forecasts from SDL have higher forecast skill and higher robust-
ness compared to those from SAT and NS (see Fig. 9). According to
the assumption made in Section 2.2 that spatial GHI estimates of SAT-
DL exhibit lower discrepancy than those of NSRDB in the surrounding
region of a target station, one implication here is that using surrounding
spatial information (i.e., GHI estimates) with lower uncertainty could
improve the forecasting performance at the target station. That said,
deep learning itself can be a feature extraction tool, and using the
extracted features (SAT-DL GHI estimates) in another deep learning
model could produce better solar irradiance forecasts than the end-to-
end model (directly from satellite data to irradiance forecasts) and the
hybrid physical-deep learning model (based on NSRDB). Since better
forecasts can be produced using spatial GHI estimates with reduced un-
certainty, it is beneficial to improve the accuracy and spatio-temporal
resolutions of satellite-derived irradiance products.

In terms of ramp analysis, as presented in Fig. 11, the increased
detection of ramps and false ramps means that the forecasts of ramp
events for longer time horizons are relatively easier, but are also
associated with a higher likelihood of false ramp forecasts. This is
because the data-driven methods produce forecasting only referring
past observations, the uncertainty would increase for longer forecast
horizons. The integration of NWP products as future-known inputs
could be helpful. The decrease in ramp magnitude forecasts indicates
that it is possible to detect ramp events for longer time horizons, but
the accurate forecast of ramp magnitude is much more challenging.
The compromised RDI performance at PSU indicates that the ramp
forecasts for locations with frequent cloudy skies may have larger
unpredictability. As for the higher RMI at PSU, the reason could be
the greater attenuation of irradiance by more frequent clouds, which
leads to a lower irradiance magnitude. Therefore, the ramp magnitude
forecasts at PSU perform better than those at DRA and SXF.

When it comes to distribution-oriented evaluation, the distributions
of forecasts at DRA and SXF are more closely aligned along the identity
line (see Figs. 12 and 13), which means that the GHI forecasts are
more calibrated at DRA and SXF than those at PSU. When comparing
the results at each location, the distributions of SDL forecasts are more
centered than those of SAT and NS, especially at PSU. The conditional
distributions in Fig. 13 reveal that the GHI forecasts for more frequent
cloudy skies (at PSU) are more challenging compared to moderate and
low cloudy conditions (at SXF and DRA) regardless of the input used.
Nevertheless, the deep learning model chain can produce better overall
forecasts than SAT, NS, and a bunch of other deep learning methods
including CNN-LSTM, LSTM, BiLSTM, and GRU, especially when more
clouds are present.

It is found that the forecasting methods have compromised perfor-
mance when more frequent clouds are present. For instance, at PSU,

higher errors of nRMSE, inferior performance in ramp forecasts, and
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Fig. 12. Joint and marginal distributions of GHI forecasts and measurements at (a) DRA, (b) PSU, and (c) SXF. GHI forecasts are based on raw satellite data (SAT), satellite-derived
GHI estimates of NSRDB (NS) and SAT-DL (SDL).
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Fig. 13. Same as Fig. 12, but for conditional distributions of GHI forecasts, given the measurements.
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Fig. 14. The comparison of forecast skill [%] and 𝑅2 for GHI forecasts with different deep learning methods at (a) DRA, (b) PSU, and (c) SXF. Higher forecast skill and higher
𝑅2 indicate better results.
sparser joint and conditional distributions can be observed. This is
related to the difficulties in cloud detection and prediction, as clouds
are present in the three-dimensional atmosphere, while geostationary
satellites can only provide two-dimensional information. It is suggested
to integrate locally-sensed data, such as sky images [31], to provide
additional information. Condition-based forecasting, which classifies
clear, partially clear, and cloudy situations for model development,
might be helpful to address the issues related to cloudy skies. Mean-
while, spatio-temporal satellite-derived irradiance products can also be
used to track cloud movements [29]. Therefore, deriving more accurate
irradiance estimates from satellite data also serves the objective, as
evidenced by the improved performance of the proposed deep learning
model chain for GHI estimates and forecasts. However, more research
is still needed in modeling cloud movements in a three-dimensional
perspective, since the ability to predict the amount, optical depth,
movements, and locations of clouds is indispensable in improving solar
forecasting [5].

5. Conclusions

Satellite data and satellite-derived irradiance products have been
extensively used in solar forecasting, as the inclusion of spatio-temporal
information is more likely to produce high-accuracy forecasts. How-
ever, the potential benefits of satellite-derived irradiance products and
their improvements for intra-day solar forecasting have not been fully
investigated in the literature. In this regard, this study compares the
spatio-temporal inputs from spectral satellite measurements for intra-
day solar irradiance forecasting with deep learning. Furthermore, a
deep learning model chain for GHI forecasts is proposed to achieved
improved forecasting performance. The model chain first converts satel-
lite data to spatial GHI estimates via a deep learning model (SAT-DL),
and then using the estimates as inputs to another deep learning model
for intra-day solar irradiance forecasting. The effectiveness of the model
chain in improving intra-day GHI forecasting is evaluated by comparing
it with other methods, namely, the end-to-end deep learning model
based on raw satellite images, the hybrid physical-deep learning model
based on NSRDB, and other deep learning models of CNN-LSTM, LSTM,
BiLSTM, and GRU.
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Compared with using spectral satellite images, forecasting mod-
els based on spatial satellite-derived GHI estimates generally produce
better forecasts (with lower nRMSE and higher 𝑅2) in most cases.
In addition, using SAT-DL GHI estimates show potentials for yielding
better forecasts compared to using NSRDB GHI estimates. However,
the forecasts based on satellite-derived GHI estimates tend to have
larger biases. Despite the presence of larger bias, spatial GHI estimation
products are still promising inputs for intra-day solar forecasting, as
post-processing methods can be used for biases correction and refine-
ment. When comparing the forecast skill, the proposed deep learning
model chain generally have better performance and higher robustness.
Given that spatial GHI estimates of SAT-DL have lower uncertainties
than those of NSRDB in the nearby surrounding area, the improvement
in GHI estimates could potentially lead to better GHI forecasts.

The results of ramp analysis and distribution-oriented verification
show that there are larger forecasting uncertainties and biases for
locations with cloudier skies. This is due to the higher unpredictability
of the irradiance in such cloudy conditions. When there are more
clouds, the forecasts are found to have compromised performance in
the ramp detection. Meanwhile, GHI forecasts are also associated with
larger biases for low- and high-irradiance conditions. This indicates
that further efforts are required in detecting and predicting cloud
movements. Nevertheless, the deep learning model chain shows better
forecasting performance compared to the benchmark deep learning
models.

In summary, the deep learning model chain shows great potential
for improving GHI forecasts through the derivation of more accurate
spatial GHI estimates from spectral satellite measurements. Compared
with the benchmark deep learning models, the proposed deep learning
model chain shows better performance, particularly under frequent
cloudy conditions. However, there are still some limitations, such as the
need of ground measurements and additional computational time to ob-
tain GHI estimates via the pre-trained deep learning model. Considering
that the physical radiative transfer model in NSRDB also requires extra
time to produce GHI estimates for operational forecasting, the deep
learning model chain provides a novel framework for satellite-based
solar forecasting, where more advanced deep learning algorithms could
be used as an alternative to obtain spatial GHI estimates to further
improve intra-day solar forecasts.
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