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H I G H L I G H T S

A Physics-Informed Machine Learning 
model estimates heat dissipation in PV 
arrays.
Data from 160 CFD simulations is used 
to train and validate the proposed model.
A novel Pocket Loss function improves 
interpretability and model robustness.
The model achieves 2.7% errors on test-
ing datasets.
The model outperforms empirical meth-
ods and is faster than CFD simulations.
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 A B S T R A C T

Convective cooling by wind is crucial for large-scale photovoltaic (PV) systems, as power generation inversely 
correlates with panel temperature. Therefore, accurately determining the convective heat transfer coefficient 
for PV arrays with various geometric configurations is essential to optimize array design. Traditional methods 
to quantify the effects of configuration utilize either Computational Fluid Dynamics (CFD) simulations or 
empirical methods. These approaches often face challenges due to high computational demands or limited 
accuracy, particularly with complex array configurations. Machine learning approaches, especially hybrid 
learning models, have emerged as effective tools to address challenges in heat transfer design optimization. 
This study introduces a method that combines Physics-Informed Machine Learning with a Deep Convolutional 
Neural Network (PIML-DCNN) to predict convective heat transfer rates with high accuracy and computational 
efficiency. Additionally, an innovative loss function, termed the "Pocket Loss", is developed to enhance the 
interpretability and robustness of the PIML-DCNN model. The proposed model achieves relative estimation 
errors of 2.5% and 2.7% on the validation and test datasets, respectively, when benchmarked against 
comprehensive CFD simulations. These results highlight the potential of the proposed model to efficiently 
guide the configuration design of PV arrays, thereby enhancing power generation in real-world operations.
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Nomenclature

Symbols

𝛼 Coefficient of Pocket Loss
𝛽𝑝 Temperature coefficient of photovoltaic 

panels, [%/K]
𝜒 Parameters need physical interpretation
𝜀 Relative error
𝛤 Distinguish label in training, [m2/s]
𝛬 Lacunarity
𝜈 Kinematic viscosity of air, [N s/m2]
𝛷 Convolution Neural Network
𝛹 Geometric features
𝜃 Tilt angle of the panels, [rad], or Feed 

forward layers
𝜉 Pocket Loss
𝐶low Lower boundary in Pocket Loss
𝐶up Upper boundary in Pocket Loss
𝐷 Characteristic height of the array used to 

calculate Nu, [m]
𝑑 Panel length, [m]
𝑒 Maximum relative error
𝐻 Height of the computation domain, [m]
ℎ Coefficient of convective heat transfer, 

[W/m2 K]
𝑘 Thermal conductivity of air, [W/m K]
𝐿 Length of the computation domain, [m]
𝐿𝑐 Characteristic length used to calculate Re, 

[m]
𝑃 Generated power from PV, [W/m2]
𝑝0 Ambient air pressure, [atm]
𝑞 Heat flux, [W/m2]
𝑅2 Coefficient of determination
𝑟𝑖 Length of gliding box, [m]
𝑟PO Power output ratio
𝑆 Spacing between two rows of panels, [m]
𝑠(𝑟) Ratio of volume occupied by gliding box
𝑇 Temperature, [K]
𝑡 Panel thickness, [m]
𝑇0 Initial temperature, [K]
𝑇∞ Ambient air temperature, [K]
𝑈∞ Wind velocity, [m/s]
𝑊 Width of the computation domain, [m]
𝑤 Weights of neural network
Nu Nusselt number
Pr Prandlt number
Re Reynolds number
Subscripts

𝑖 𝑖th element or 𝑖th time
2D Geometry in 2D scale

1. Introduction

As one of the most prevalent devices for converting solar energy 
into electrical power, photovoltaic (PV) systems play a pivotal role 
in the transition towards sustainable energy sources. Effective thermal 
management is crucial for maintaining the performance of PV systems, 
as a 1 ◦C increase in panel temperature can decrease power output 
2 
3D Geometry in 3D scale
mod PV panel module
STC Standard test conditions
surf Surface

Abbreviations

CFD Computation Fluid Dynamics
DCNN Deep Convolution Neural Network
GBM Gliding Box Method
LES Large Eddy Simulation
MAE Mean Absolute Error
PIML Physics-Informed Machine Learning
PL Pocket Loss
PV Photovoltaic
RMSE Root Mean Square Error

by 0.65% and conversion efficiency by 0.08% [1]. Consequently, the 
analysis and control of heat transfer in PV panels have become sig-
nificant areas of research and development, particularly for large-scale 
installations such as PV arrays. The current methods for managing heat 
transfer are generally divided into passive cooling, active cooling, and 
hybrid cooling, most of which involve dissipating heat from the PV 
panel to an adjacent cooling medium  [2]. For large-scale PV arrays, 
air-based convective cooling is particularly advantageous due to its 
cost-effectiveness and efficiency in removing substantial amounts of 
heat from panel surfaces. This method leverages the bulk movement 
of air, imposes minimal requirements on the thermal properties of the 
PV coating materials, and is highly suitable for desert regions where 
water resources are scarce  [3].

For air-based convective cooling, the geometrical configurations of 
PV panels can significantly influence convective heat transfer perfor-
mance, as demonstrated by Glick et al. [4]. In the context of single 
panels, Bilawane et al. [5] explored optimal inclination angles to 
enhance heat transfer efficiency. Additionally, Pawar and Sobhansar-
bandi [6] investigated the incorporation of phase change materials 
with heat pipe designs to optimize heat transfer. Pretorius and Nielsen 
[7] focused on design optimizations for both fixed-tilt and single-axis 
tracking PV systems, aiming to achieve optimal heat dissipation under 
both windy and calm conditions. For PV arrays, a staggered-height 
arrangement can improve airflow over subsequent panels, as shown in 
Fig.  1, and holds potential for optimizing heat transfer design in PV 
systems [8].

Accurate quantification of the impacts of array configurations on 
the convective heat transfer coefficient under various environmen-
tal conditions necessitates extensive Computational Fluid Dynamics 
(CFD) simulations [9], complemented by wind tunnel and field ex-
periments [4,10]. However, these methods are resource-intensive. For 
instance, Large Eddy Simulations (LES) require approximately 43,000 
core hours on a high-performance computing cluster to compute six 
cases of a LES transient study using the Uintah MPMICE software [11]. 
The substantial computational cost and hardware demands associated 
with CFD pose significant challenges for practical engineering applica-
tions. To facilitate the quantification of heat transfer performance in 
PV arrays and enhance their convective heat transfer, researchers have 
developed empirical correlations incorporating geometric simplifica-
tions. Glick et al. [10] simplified PV array configurations into flat plate 
arrays to establish a relationship between the Nusselt number (Nu) and 
Reynolds number (Re) based on wind tunnel experiments. Jaffer [12] 
applied boundary-layer theory to construct an empirical relationship 
among dimensionless numbers, quantifying natural convection heat 
transfer for isothermal plates. To address complex configurations in 
PV arrays, some studies have introduced and developed the concept 
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Fig. 1. Wind velocity field around PV arrays with a uniform-height configuration (upper plot) and a staggered-height configuration (lower plot). The results were generated using 
COMSOL.
of spatial distribution lacunarity, which effectively characterizes the 
configurations of PV panels within an array [13]. Nonetheless, chal-
lenges in determining characteristic length scales and limitations due 
to small sample sizes compromise the accuracy and generalizability of 
these empirical correlations.

In summary, current methodologies for quantifying convective heat 
dissipation in PV arrays present a significant trade-off: empirical ap-
proaches are computationally efficient but often lack precision, whereas 
Computational Fluid Dynamics (CFD) methods, while accurate, are 
computationally intensive. Thus, this work addresses the urgent need 
for a method that can estimate convective heat transfer in PV arrays 
with various configurations, achieving both high accuracy and com-
putational efficiency. Consequently, we propose a Machine Learning 
(ML)-based approach to estimate the convective heat transfer of various 
PV array configurations. This method aims to combine the compu-
tational efficiency of empirical models with the accuracy of detailed 
simulations, providing a robust solution for optimizing heat dissipation 
and improving the overall efficiency of PV systems.

For heat transfer and energy-related applications, machine learning 
methods demonstrate substantial advantages over traditional physical 
approaches such as simulation and experimentation. These advantages 
are evident in terms of accuracy and computational efficiency [14]. 
The integration of physical laws into machine learning — termed 
physics-informed machine learning (PIML) — significantly enhances 
the interpretability of machine learning applications in complex phys-
ical systems [15,16]. For instance, Efatinasab et al. [17] developed 
both machine learning and deep learning models to quantify the per-
formance of heat exchangers equipped with micro-finned tubes for 
design optimization purposes. Hughes et al. [18] developed a machine 
learning model with physically informed features to predict real-time 
temperatures of electronic machines. Image analysis techniques, such as 
DCNN and other methods, have become increasingly popular in energy 
and heat transfer research. These approaches have shown considerable 
potential for quick solution estimation in physical problem-solving 
domains, including the modeling of hydrological systems and turbu-
lent heat transfer [19]. Yang et al. [20] employed a graphical neural 
network in conjunction with compact physical equations to model the 
thermal dynamics of buildings. Moreover, hybrid machine learning 
approaches that combine PIML with deep learning hold significant 
promise for providing precise and rapid estimations of convective heat 
transfer coefficients for design optimization [14]. Kalpana et al. [21] 
developed an innovative hybrid model combining a Physics-Informed 
Neural Network with a Convolutional Neural Network to predict the 
heat transfer coefficient in complex configurations involving gas-solid 
3 
fixed beds and coal combustion and gasification, achieving a coefficient 
of determination (𝑅2) of 0.98.

In the PV sector, these techniques are applied in areas such as solar 
energy forecasting [22–24], panel defect detection, and addressing the 
uncertain characteristics of energy sources to ensure stability in energy 
generation [16]. These successful applications provide a solid founda-
tion of inspiration for our work. However, there is a notable gap in the 
literature regarding the specific application of hybrid ML models to op-
timize PV array designs. Additionally, there is a lack of research focused 
on enhancing the interpretability of PV configuration optimization 
models during the training process, rather than exclusively in the final 
results. This study aims to fill these gaps by exploring the use of PIML 
combined with DCNN to enhance the heat transfer performance within 
PV arrays, thus optimizing their design. Our model employs a DCNN to 
process physical information from PV arrays, making it robust enough 
to handle different geometrical configurations and environmental con-
ditions. Furthermore, we have improved the interpretability of the 
model by proposing a new loss function called "Pocket Loss" for PIML, 
which provides physical insights into the model’s estimation. In the 
following sections, Section 2 presents the methodology for benchmark 
models and the proposed PIML-DCNN model. Section 3 presents the 
comparative results of the models considered. The concluding remarks 
are summarized in Section 4.

2. Methodology

In this work, three methods are used and compared to estimate heat 
transfer in PV arrays: an empirical method [13], a validated CFD model, 
and the proposed PIML-DCNN. The results of the CFD model serve as 
the ground truth for training and testing the PIML-DCNN model, as 
well as the benchmark for evaluating the accuracy of the empirical 
method. For all three methods, the inputs are the configurations of the 
PV array and the environmental conditions, including panel heights, 
row spacings, wind velocities, air properties, and incident solar flux. 
The outputs are the averaged convective heat transfer coefficients ℎ of 
all panels. The methodology flowchart is presented in Fig.  2.

2.1. Problem description

Under the conditions of a constant ambient temperature 𝑇∞, a 
constant solar flux incident on PV panels, and a given wind speed 𝑈∞, 
the configuration of PV array – especially the row spacing 𝑆 and the 
height 𝐻 of each row – play a pivotal role in determining the turbulent 
flow around the panels and the convective heat transfer rate [13]. In 
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Fig. 2. Methodology flowchart of this work. The inputs are PV array configurations and environmental conditions. The outputs are the convective heat transfer coefficients. The 
methods compared include a CFD method, an empirical method, and the proposed PIML-DCNN method.
this study, the arrays are categorized into two different height config-
urations: the same-height array, where all rows have the same height, 
and the staggered-height array, which consists of rows with varying 
heights, as shown in Fig.  3. To analyze the convective heat transfer 
rate under various conditions, the height arrangement, row spacing 𝑆, 
and wind speed 𝑈∞ are selected as manipulated variables. Variations 
in the spanwise direction are assumed to be negligible [13]. A total of 
160 cases (8 × 5 × 4 = 160) are analyzed based on the configurations 
outlined in Fig.  3, with each case being a unique combination of 
height arrangement (8 cases), 𝑆 (5 cases), and 𝑈∞ (4 cases) . Other 
configuration parameters are determined according to the dimensions 
reported in [13]. A constant solar irradiance of 562.5 W/m2 is applied 
to the upper surface of all PV panels [10], with 112.5 W/m2 being 
converted into electricity and the remaining 450 W/m2 being dissipated 
through convection. The 450 W/m2 of absorbed solar energy translates 
to an internal heat source with an intensity of 1286 W/m3, considering 
the dimensions of PV panels.

2.2. The CFD method

A CFD model has been developed in COMSOL Multiphysics to sim-
ulate both velocity and temperature fields by solving the momentum 
and energy equations. To primarily address the effects of turbulence 
on heat transfer, rather than focusing on the detailed dynamics, the 
𝑘−𝜀 turbulence model is employed. The boundary conditions for these 
CFD simulations are detailed in Table  1. The fluid is assumed to be 
incompressible, with its pressure set to 𝑝∞ = 1 atm. The open boundary 
condition indicates that the normal stress is zero. The dimensions of 
the computational domain are 𝐿 = 300 m and 𝐻 = 53 m, and the 
ambient and initial temperatures of the PV module are set to 300.15 
K, as described in Stanislawski et al. [11]. The average convective heat 
transfer coefficient, ℎ, for the array is determined as: 

ℎ =
𝑞𝑠

�̄�surf − 𝑇∞
(1)

where 𝑞𝑠 and �̄�surf  represent the average convective heat flux and 
surface temperature across all panel surfaces, respectively.

The validation of the CFD results is detailed in Appendix. Following 
this validation, the CFD model was utilized to generate a dataset 
4 
consisting of 160 distinct cases, each varying in panel heights, row spac-
ings, and wind velocities. From this dataset, 100 cases were selected 
to train the proposed PIML-DCNN model, while another 40 cases were 
reserved for model validation. The remaining 20 cases, which represent 
the Low-Medium-High (LMH) configuration – a particularly complex 
configuration not included in the training set – were used for further 
test of the PIML-DCNN model.

2.3. The empirical method

To estimate the convective heat transfer of PV arrays with inclined 
PV panels, the following empirical correlation is proposed by Smith 
et al. [13], 
log10(Nu) = 𝑎Re𝑚Pr𝑛 + 𝑏 (2)

where 𝑎, 𝑏, 𝑚, and 𝑛 are empirically fitted coefficients. Pr is the Prandtl 
number, and Nu is the Nusselt number, representing the ratio between 
heat convection and conduction, 

Nu = ℎ𝐷
𝑘

(3)

where, ℎ is the convective heat transfer coefficient, and 𝑘 is the thermal 
conductivity of air. 𝐷 is the characteristic height of the array, which is 
represented by the canopy height of the panel at the 8th row, where 
the flow boundary is fully developed [13]. Re is the Reynolds number, 
representing the ratio between inertial and viscous forces, 

Re =
𝑈∞𝐿c

𝑣
(4)

where 𝑈∞ represents the wind velocity, 𝐿c is the characteristic length, 
and 𝑣 is the kinematic viscosity of air.

To ensure the effectiveness of the above empirical equation, it is 
essential to derive a characteristic length scale, 𝐿c, to represent the 
configurations of PV arrays, where PV panels are not homogeneously 
distributed. Therefore, Smith et al. [13] proposed a method to derive 
𝐿c based on the concept of lacunarity. Lacunarity is quantified by 
the Gliding Box Method (GBM), where multiple boxes with different 
lengths are introduced to move through the entire PV array space, as 
shown in Fig.  4 [13]. GBM updates the PV configuration’s occupation 
features within the box in each step and generates an overall lacunarity 
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Table 1
Boundary conditions of the CFD model. The computation domain is 𝐿 = 300m and 𝐻 = 53m.
 𝑥 = 0 (inlet) 𝑥∕𝐿 = 1 (outlet) 𝑧 = 0 (bottom) 𝑧∕𝐻 = 1 (top) PV body  
 Momentum 𝑈=𝑈∞ Open Boundary 𝑈 = 0m/s Open Boundary –  
 Thermal 𝑇∞ = 300.15K 𝑇0 = 300.15K Zero flux 𝑇0 = 300.15K 𝑞 = 1286W/m3 
Fig. 3. (a) Schematic of the PV array configurations with the inflow air velocity 𝑈∞, ambient temperature 𝑇∞, and row spacing 𝑆. Five different row spacings are considered: 
5.81 m, 6.54 m, 7.26 m, 7.99 m, and 8.72 m. The panel dimensions include a length 𝑑 = 3.3 m, a thickness 𝑡 = 0.35 m, and a tilt angle 𝜃 = 30◦. The variables 𝐻1, 𝐻2, and 𝐻3
represent different heights from the ground to the center of the panel. (b) Investigated height arrangement: ‘L’ denotes ‘Low height’ with 𝐻1 = 1.52 m, ‘M’ denotes ‘Medium height’ 
with 𝐻2 = 3.00 m, and ‘H’ denotes ‘High height’ with 𝐻3 = 4.56 m.
dimensionless number, 𝛬, from all the updates. Then, the characteristic 
length 𝐿c can be represented as, 

𝐿𝑐 =
∑

(𝛬 × 𝑅)
𝑁𝑅

, 𝑅 = [𝑟1, 𝑟2,… , 𝑟𝑁 ] (5)

where 𝑅 represents the set of box sizes used to calculate lacunarity, 𝛬 is 
the corresponding lacunarity of different boxes, 𝑟𝑁  is the resolution of 
the gliding box that should be no larger than half of the smallest length 
of a PV panel, and 𝑁𝑅 is the number of utilized box with different 
sizes [13]. Before calculating 𝐿𝑐 , an independence test is performed on 
the value of 𝑟𝑁  to ensure that changes in its value do not influence the 
calculation of 𝐿𝑐 , which is detailed in Appendix. In our experiments, 
each configurations in Fig.  3 undergoes an independence test prior to 
the development of the empirical method.

Before calculating 𝐿𝑐 , an independence test is conducted on the 
value of 𝑟𝑁  to ensure that changes in this parameter do not influence 
the calculation of 𝐿𝑐 . For our experiments, each array configuration 
undergoes an independence test prior to the development of the em-
pirical method. More details about the independence test is provided 
in Appendix.

For the 160 cases we considered, the characteristic length and 
height obtained using the GBM are presented in Fig.  5. The results 
show that the characteristic length ranges from 4 to 10 m, while the 
characteristic height ranges from 3 to 7m, respectively.

In addition to the correlation presented in Eq. (2), another widely 
used empirical formula for heat convection over an inclined surface is 
given by [25–27]: 

Nu = 𝑎Re𝑚Pr𝑛 + 𝑏 (6)

This model will also serve as a benchmark for evaluating the perfor-
mance of the proposed PIML-DCNN model.
5 
Fig. 4. The schematic illustration of the grid-based method (GBM) for calculating 
lacunarity, where 𝑟𝑖 represents the length of the box used to quantify 𝛬 at the current 
step.

2.4. The PIML-DCNN method

Although the CFD model can achieve satisfactory levels of accu-
racy, it requires substantial computational resources. In contrast, the 
empirical model offers efficient estimations but at the cost of reduced 
accuracy. To enhance the accuracy of the empirical model significantly, 
it is vital to capture complex geometric configurations effectively. The 
DCNN presents a robust alternative to GBM for this task, as both meth-
ods utilize iterative updates within their kernels to process geometric 
information. In this context, we introduce the PIML-DCNN as a solution 
that achieves a balance between high accuracy and computational 
efficiency.

In this methodology, a DCNN is employed to extract characteristic 
lengths 𝐿  and 𝐷 from array configurations with both same-height 
c
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Fig. 5. Characteristic length, 𝐿𝑐 , and characteristic height, 𝐷, derived from the GBM 
across all investigated geometric configurations. This data will also be utilized in 
developing the Pocket Loss function for the PIML-DCNN model.

and staggered-height arrangements. Specifically, 𝐿c is determined us-
ing a three-dimensional (3D) DCNN, while 𝐷 is derived from a two-
dimensional (2D) DCNN. Subsequently, 𝐿c and 𝐷 are used to calculate 
the Nusselt number and Reynolds number. Additionally, a multiple 
dense layer structure is designed to capture the empirical correlation 
between Nu and Re, as expressed in Eq. (6). This correlation, informed 
by physical principles, is instrumental in estimating the convective heat 
transfer coefficient ℎ.

2.4.1. Model inputs and outputs
The input data for the PIML-DCNN model include both environ-

mental conditions (i.e. wind speed) and configurations of PV arrays 
(i.e. height arrangement and spacing). The model outputs the averaged 
convective heat transfer coefficient ℎ across all panels. The primary 
learning objective is to minimize the error between the estimated ℎ
and the ℎ calculated by the CFD model.

The array configurations are imported as an information matrix, 
constructed at a resolution that is half of the minimum dimension 
among all input features, in accordance with the guidelines proposed 
by [13]. This matrix encapsulates essential characteristics of the PV 
arrays, such as the number of rows, panel dimensions, and the spacing 
between rows. Within this matrix, geometric shapes are represented by 
discrete points, with a ‘1’ indicating the presence of a panel and a ‘0’ 
denoting its absence. These points are plotted in a three-dimensional 
space to form the information matrix, which graphically represents the 
layout of the PV panels, as depicted in Fig.  6. It is important to note that 
for our PIML-DCNN model, configurations of 10 rows are employed, as 
opposed to the three-row configuration illustrated in Fig.  6. The span 
length of the panel in the information matrix is configured to be 2.0 m, 
aligning with the specifications referenced in [11].

Although the information matrix effectively represents the array 
configuration with high fidelity, the features of wind turbulence also 
depend on wind velocity. To address this variable in our machine 
learning model, we adopt the feature-crossing strategy, which involves 
the combination of features through multiplication, as described by Luo 
et al. [28]. Consequently, we define a new parameter, 𝛤 , as the product 
of wind velocity 𝑈∞ and row spacing 𝑆: 

𝛤 = 𝑆 × 𝑈∞ (7)

This parameter 𝛤  is introduced to account for the turbulent field 
features and to enhance the influence of row spacing and wind speed.
6 
Fig. 6. Illustration of the 3D information matrix representing three rows of PV panels. 
The projection of this matrix onto the 𝑥–𝑦 plane results in the corresponding 2D slice 
matrix.

2.4.2. PIML-DCNN model structure
The inputs to the PIML-DCNN model include a 3D information 

matrix, a 2D slice matrix derived as the projection of the information 
matrix on the wind field plane, the parameter 𝛤 , the ratio 𝑈∞∕𝑣, 
and the thermal conductivity of air 𝑘. As illustrated in Fig.  7, the 
3D information matrix is processed through a 3D DCNN structure and 
subsequently through feed-forward layers, denoted as 𝜃, to calculate 
the characteristic length 𝐿c, 

𝐿c = 𝜃Dense1_3d−Dense3_3d(𝛷3D(𝛹3D)) (8)

Similarly, the 2D slice matrix undergoes processing to produce the 
characteristic height 𝐷: 
𝐷 = 𝜃Dense1−Dense3(𝛷2D(𝛹2D)) (9)

During the feed-forward process in both the 3D and 2D DCNN 
architectures, after convolution, the parameter 𝛤  is integrated with the 
outputs of the 3D and 2D convolution layers. This integrated data forms 
the input for subsequent layers, which compute 𝐿𝑐 and 𝐷. 𝐿𝑐 is then 
combined with 𝑈∞∕𝑣 to calculate the Reynolds number, Re. This value 
is processed through Dense layers 4 and 5 to approximate the empirical 
correlation outlined in Eq. (6) [29]: 

Nu = 𝑎Re𝑚Pr𝑛 + 𝑏 =

( 2
∏

𝑖=1
𝑤T

3−𝑖

)

Re + 𝑏 (10)

A detailed proof of this approach is presented in Appendix. Ulti-
mately, ℎ is calculated using Nu, 𝐷 and 𝑘.

Inspired by the U-Net architecture, which has proven effective 
in processing low-resolution images [30], our model adopts a simi-
lar strategy for managing information matrix data, characterized as 
low-resolution imagery. Each convolutional layer is followed by a 
max-pooling layer to efficiently down-sample the data.

2.4.3. Pocket loss function
Although the current PIML-DCNN model can accurately approxi-

mate ℎ across the considered 160 cases, the resulting values for 𝐿c
range from −6.08 m to −5.27 m and for 𝐷, from 852 m to 1019 m. 
These ranges significantly exceed those with physical relevance, as 
presented in Section 2.3. The non-physical nature of 𝐿c and 𝐷 suggests 
the limited interpretability of the model, particularly with respect to 
the Nusselt number. To enhance the interpretability of PIML, it may be 
beneficial to customize loss functions by incorporating physical laws 
directly into the loss function [31], and to explore other innovative 
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Fig. 7. Structure of the proposed PIML-DCNN model. Each tuple represents the size of the respective layer, with the last element indicating the kernel size of the DCNN layers.
Fig. 8. Illustration of Pocket Loss for 𝐿c Using Gradient Representation. This plot 
depicts the loss values as dots, with the corresponding gradients represented by 
triangles: green triangles indicate values that exceed the boundary, while blue triangles 
show values within the boundary. Dashed lines delineate the lower and upper boundary 
values.  (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

approaches like those proposed in Rao et al. [32]. Consequently, we 
introduce a novel loss function, termed "Pocket Loss", to enhance the 
interpretability of the proposed model: 

𝜉𝑖 =
�̄�3
𝑖

𝐶up
3
+ 1

𝑒�̄�𝑖−𝐶low
(11)

where 𝜉𝑖 represents the Pocket Loss for the physical parameter requiring 
interpretability; �̄�𝑖 denotes the average value of 𝜒𝑖. The constants 𝐶up
and 𝐶low are the upper and lower boundary values, respectively, based 
on the physical knowledge of the domain for 𝜒𝑖. We define Pocket Loss 
in this way to maintain the model’s overall convexity during training – 
particularly important for generating negative outputs – and to robustly 
encourage exploration around the defined boundary values. This is 
achieved as the gradients near the boundaries are significantly lower 
than those farther away, guiding the model to stay within realistic 
limits.

Taking 𝐿c as an example, its range is approximately between 4 m 
and 10 m, as depicted in Fig.  5. We set the constraints with 𝐶up = 10
m and 𝐶low = 4 m to ensure that 𝐿c remains within this specified 
range. As illustrated in Fig.  8, during training, values that exceed 
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the boundaries are subjected to a higher magnitude and steeper loss 
gradients compared to values that remain within the boundaries, where 
the loss remains below 1.0. Consequently, as the deep learning model 
strives to minimize the loss value and its gradient, the upper and 
lower boundaries act as a ‘pocket’, containing the variations in 𝐿c
and its gradient. This pocket guides the model towards the defined 
range, resulting in relatively low values of 𝜉 and 𝜕𝜉∕𝜕𝐿c. Additionally, 
Pocket Loss remains differentiable within the boundary region, which 
circumvents issues related to non-convexity and local minima, thus 
ensuring a smooth and robust training process.

The boundary value settings for 𝐷 are also based on the information 
presented in Fig.  5, with 𝐶up set to 7 m and 𝐶low set to 3 m. When 
interpretability is required for multiple physical parameters, Pocket 
Loss is redefined as, 

𝜉 =

√

√

√

√

√

𝑛
∑

𝑖=1

(

�̄�3
𝑖

𝐶up,𝑖
3
+ 1

𝑒�̄�𝑖−𝐶low,𝑖

)2

(12)

This equation directs the adaptation of all parameters during train-
ing by minimizing the projected distance within an 𝑛-dimensional 
geometric space, where 𝑛 represents the number of physical parameters 
requiring interpretability. The refined loss function for training the 
model is subsequently defined as follows: 
Loss = RMSE + 𝛼𝜉 (13)

where RMSE represents the Root Mean Square Error, quantifying the 
discrepancy between the model’s predicted ℎ and the actual ℎ (from 
CFD simulations). The coefficient 𝛼 is introduced to balance the gra-
dient between 𝜉 (the interpretability term) and RMSE during training. 
For our experiments, we set the value of 𝛼 to be 0.3 based on trial and 
error experiments. Details of each model component for models with 
Pocket Loss and without Pocket Loss are summarized in Table  2.

2.4.4. Training process of PIML-DCNN model
In this work, 160 cases were produced using the validated CFD 

model. Out of these, 100 cases were used to train the PIML-DCNN 
model, while 40 cases were designated for validation and 20 cases 
comprised the testing dataset. During the training process, 20 cases are 
combined into a single batch and inputted into the model for simultane-
ous training. To optimize the smoothness and stability of the training 
process, a total of 300 epochs were implemented. During the initial 
50 epochs, a learning rate of 10−3 was applied, utilizing the Adam 
optimizer and early dropout techniques to quickly guide the model 
towards the pre-established boundaries. Subsequently, the learning rate 
was reduced to 10−4 for the next 110 epochs. To counteract underfit-
ting, especially when training with limited data, we incorporated an 
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Table 2
Details of each model component, including layer name, output shape, arguments settings, and the number of parameters to be trained. Each 
MaxPool is followed by a ReLU function. As Pocket Loss performs similar role as ReLU and PReLU that eliminate value lower than 0 during 
training process, so for model without PL Dense3_3d /Dense_3 will follow a PReLU function.
 Layer name Output shape Hyperparameter Parameter number 
 Conv2d_1 [−1, 32, 498, 35] stride = 1, kernel = (3,3) 896  
 MaxPool_2d kernel = (2,2) 0  
 Conv2d_2 [−1, 64, 249, 17] stride = 1, kernel = (3,3) 18,496  
 MaxPool_2d kernel = (1,1) 0  
 Conv2d_3 [−1, 3, 249, 17] stride = 1, kernel = (3,3) 1731  
 MaxPool_2d kernel = (1,1) 0  
 Conv3d_1 [−1, 3, 3, 498, 35] stride = 1, kernel = (3,3) 84  
 MaxPool_3d kernel = (2,2) 0  
 Conv3d_2 [−1, 16, 1, 249, 17] stride = 1, kernel = (3,3) 1312  
 MaxPool_3d kernel = (1,1) 0  
 Conv3d_3 [−1, 3, 1, 249, 17] stride = 1, kernel = (3,3) 1299  
 MaxPool_3d kernel = (1,1) 0  
 Flatten_1 [−1, 12699] 0  
 Flatten_2 [−1, 12699] 0  
 Dense1_3d/ Dense_1 [−1, 64] 812,864  
 Dense2_3d /Dense_2 [−1, 16] 1040  
 Dense3_3d /Dense_3   
 (With PReLU if no PL) [−1, 1] 17  
 Dense_4 [−1, 16] 32  
 Dense_5 [−1, 1] 17  
 Total parameters number: 1,651,709  
‘Early Dropout and Late Drop’ technique [33]. The dropout layer is 
active only during the initial and final 20% of the training epochs and 
is subsequently deactivated to address both overfitting and underfitting 
issues. These adjustments were aimed at fine-tuning the model to 
maintain optimal accuracy on both the test and validation datasets, 
ensuring performance within or close to the established boundaries. 
Ultimately, the performance of the trained model was evaluated on the 
validation and testing dataset to assess the applicability of the proposed 
PIML-DCNN model. For comparison purposes, the model without PL 
will be trained using the same processes, except for the ’Early Dropout 
and Late Drop’ technique.

3. Results and discussion

3.1. Performance of the empirical method

To assess the performance of both the empirical method and the 
PIML-DCNN method when taking the CFD results as ground truth, the 
coefficient of determination (𝑅2) and the maximum relative error (𝜀) 
are utilized as metrics, which is defined as: 

𝜀 =
(

MAE(�̂�, 𝑦)
min(�̄�, ̄̂𝑦)

)

× 100% (14)

In this context, �̂� denotes the predicted value of ℎ, 𝑦 represents the 
value obtained from the CFD simulation (ground truth), �̄� and ̄̂𝑦 are the 
average values of 𝑦 and �̂�, respectively, and MAE is the Mean Absolute 
Error between the predictions and the target values.

As shown in Table  3, upon applying the empirical model, as detailed 
in Eqs. (2) and (6), to our CFD dataset, the highest model accuracy 
was achieved with the parameters 𝑎 = 0.09, 𝑏 = 1.91, 𝑚 = 0.2, and 
𝑛 = 0.0833 for Eq. (2), and 𝑎 = 0.6093, 𝑏 = 1.0597, 𝑚 = 0.6336, and 
𝑛 = 1.3322 for Eq. (6). Despite this optimization, the overall accuracy 
remains unsatisfactory, with an 𝑅2 of 0.61 and an 𝜀 of 17%. This level 
of accuracy indicates that the characteristic lengths employed in the 
empirical model may not sufficiently capture the complexity of PV 
array configurations.

3.2. Performance of the PIML-DCNN model

As presented in Fig.  9 and Table  3, the PIML-DCNN model uti-
lizing Pocket Loss demonstrates exceptional performance. In both the 
validation and test datasets, it achieves relative errors of 2.5% and 
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2.7%, respectively, with 𝑅2 values of 0.99. This indicates that the 
proposed PIML-DCNN model is significantly more accurate compared 
to the empirical model.

Furthermore, Table  3 demonstrates that the introduction of the 
Pocket Loss function enhances both the interpretability and the physical 
plausibility of the PIML-DCNN model. By incorporating Pocket Loss, 
the model ensures that the characteristic length 𝐿𝑐 and characteristic 
height 𝐷 are constrained within a physically plausible ranges of 4.47 
to 5.92 m and 4.99 to 5.80 m, while maintaining the characteristic 
length 𝐿c within a range of 3.35 to 4.24 m. Additionally, the Reynolds 
numbers predicted by the model incorporating Pocket Loss fall within 
a range of 4.7 × 105 to 1.4 × 106, closely aligning with the valid range 
established by Smith et al. [13].

Moreover, the proposed PIML-DCNN model requires significantly 
less computational time compared to CFD approaches. For the CFD 
model used in this study, a single case employing the 𝑘 − 𝜀 turbulence 
model requires at least 3 min to produce reasonable results on a 
high-performance AMD Ryzen Threadripper 3970X 32-Core Proces-
sor. In contrast, our trained PIML-DCNN model is capable of estimat-
ing the heat transfer performance of various configurations almost 
instantaneously.

Fig.  10 presents a visual comparison between the estimations of the 
convective heat transfer coefficient ℎ from both the CFD simulations 
and the PIML-DCNN model. The heat maps, indicating the average 
ℎ across the array from CFD results and model predictions, show a 
high level of concordance, validating the accuracy of the PIML-DCNN 
model. Additionally, Fig.  10 reveals that staggered height configura-
tions encounter more significant heat transfer challenges than uniform 
height scenarios, with the optimal arrangement being when all panels 
are at the same height of 3.3 m. However, the subpar performance of 
staggered-height configurations contrasts with their observed beneficial 
impact on regional flow optimization, as seen in Fig.  1. To explain this 
inconsistency, a more in-depth analysis of the CFD results is undertaken 
in the following section.

3.3. Comparison between panel configurations

The efficiency and power output of PV panels are markedly affected 
by their temperature. To evaluate this influence, we present the power 
output ratio of panels under various configurations compared to their 
performance under standard conditions in Fig.  11. The power output 
ratio is calculated as: 
𝑟PO = 𝑃 = 1 + 𝛽𝑝(𝑇mod − 𝑇STC) (15)
𝑃STC
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Table 3
Comparison of prediction accuracy for the convective heat transfer coefficient ℎ and interpretability based on the value ranges of 𝐿𝑐 and 𝐷
across various methods.
 Correlation Eq. (2) Correlation Eq. (6) PIML-DCNN (no PL) PIML-DCNN (with PL) 
 𝜀 (%) (validation) 27% 37% 3.4% 2.5%  
 𝜀 (%) (test) 19% 39% 6.2% 2.7%  
 𝑅2 (validation) 0.28 −0.1 0.99 0.99  
 𝑅2 (test) 0.49 −0.48 0.94 0.99  
 𝐿c [4.23m, 9.16m] [4.23m, 9.16m] [–6.08m, −5.27m] [4.47m, 5.92m]  
 𝐷 [3.17m, 6.21m] [3.17m, 6.21m] [850m, 1019m] [4.99m, 5.80m]  
Fig. 9. Performance of the proposed PIML-DCNN model with Pocket Loss function on (a) training data, (b) validation data, and (c) testing data. Colored dots represent CFD results 
under various wind speeds, stars indicate results from the empirical method, and the line depicts PIML-DCNN predictions.  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
where 𝑃  denotes the actual power output, 𝑃STC is the power output 
under standard test conditions (STC), 𝑇mod refers to the panel temper-
ature from CFD results, 𝑇STC = 25 ◦C is the standard temperature, and 
𝛽𝑝 = −0.45,%∕K is the temperature coefficient of the panel [34].

Fig.  11 demonstrates that in arrays consisting of ten rows with 
staggered-height configurations, the first three rows exhibit improved 
power generation compared to those in uniform-height configurations. 
However, from the fourth row onward, there is a noticeable reduction 
in heat transfer efficiency. This decline in performance for panels 
located downstream is more pronounced in staggered-height configu-
rations than in uniform-height scenarios.

3.4. Discussions

Although staggered-height configurations generally exhibit lower 
overall heat transfer performance compared to uniform-height configu-
rations, the significantly enhanced heat transfer in the front rows of 
staggered-height arrays highlights a potential strategy. It suggests a 
balance could be achieved by employing staggered heights in the front 
rows while maintaining uniform heights in the rear rows. This approach 
could optimize the design of heterogeneous height arrangements for 
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large-scale PV arrays. In such designs, the heights of PV panels are 
not simply varied in a periodic pattern but are strategically adjusted 
to maximize efficiency, with front rows in a staggered configuration 
and subsequent rows uniform. This configuration adds complexity to 
the design process and would likely increase costs if traditional experi-
mental and computational fluid dynamics (CFD) methods are employed 
to quantify the convective heat transfer coefficient. Consequently, our 
hybrid learning model presents significant advantages, enabling rapid 
and accurate optimization of such configurations, which is particularly 
beneficial for industrial applications.

4. Conclusion

This work introduces an innovative approach that evaluates how the 
geometric layouts of PV modules influence their rate of convective heat 
loss under various environmental conditions. It achieves this by em-
ploying a combination of Physics-Informed Machine Learning (PIML) 
and a Deep Convolutional Neural Network (DCNN) to develop the 
PIML-DCNN approach. Additionally, we introduce a novel loss function 
termed "Pocket Loss", which enhances the interpretability of the gener-
ated physical parameters within the PIML-DCNN model. This function 
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Fig. 10. Estimated ℎ from (a) CFD method (left column) and (b) PIML-DCNN method (right column) for each array configuration for different wind velocities. The consistency 
in color distributions between the CFD and PIML-DCNN results across all cases indicates the accuracy of our model.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)
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Fig. 11. Relative power output for each panel in arrays with diverse configurations. All cases maintain identical row spacing of 7.99 m and a wind velocity of 2.3 m/s. Other 
scenarios with different row spacings and wind velocities have comparable trends.
guides the model towards optimal results within a numerical range 
that adheres to physical principles. The developed PIML-DCNN model 
exhibits relative errors of 2.5% on the validation dataset and 2.7% on 
testing dataset when estimating the averaged convective heat transfer 
coefficient of the PV array, compared to validated CFD simulations. 
Once trained, the PIML-DCNN model can provide nearly instantaneous 
estimates of the convective heat transfer coefficient for new PV ar-
ray configurations, striking an optimal balance between accuracy and 
computational efficiency. To investigate the influence of the array 
configuration on power output, we examined the power output of each 
panel within a ten-row array. The analysis indicates that in arrays with 
staggered heights, the first three rows outperform those in uniformly 
heightened arrays in terms of power generation. However, from the 
fourth row onward, a significant reduction in heat transfer efficiency 
becomes evident. Panels set at a uniform but elevated height across all 
rows demonstrate the most effective convective cooling performance. 
By capturing the impact of array layouts on convective heat dissipation, 
the proposed model offers an effective tool for optimizing PV array 
design, ultimately enhancing power generation efficiency in practical 
applications.
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Appendix

Validation of the CFD model

The grid independence test of the CFD model is illustrated in Fig. 
A.1. When the number of mesh elements reaches 152,539, further 
refinement results in negligible differences in the calculated average 
surface temperature of the PV array. Consequently, this mesh density 
is utilized for all subsequent numerical experiments. 

The CFD results are validated against the Large Eddy Simulation 
(LES) results reported in [11]. The fluid domain of the LES model was 
three-dimensional and was specifically configured to closely encompass 
the PV array. The span length of this domain matches the width 
of a single PV panel with dimensional ratios of 𝑊 ∕𝐿 = 0.01 and 
𝑊 ∕𝑍 = 0.04. Given that the variations in the physical fields along 
the spanwise dimension are small when compared to the other two 
dimensions, we propose simplifying the model by omitting the spanwise 
dimension. This simplification is intended to decrease computational 
costs while still preserving an acceptable level of accuracy in heat 
transfer predictions.

For the purpose of validation, we simulate scenarios analogous to 
those described in [11], where panels are maintained at a constant 
temperature of 320.15 K and a height of 1.52 m, and are spaced at 
various intervals under a wind speed of 𝑈∞ = 3.6 m/s. The average con-
vective heat transfer coefficient from our CFD simulations is calculated 
according to Eq. (1).

The Nusselt number (Nu) is employed as the primary metric for 
validation. The relative difference, 𝑒 is defined as: 

𝑒 =
|Nu𝑖 − N̂u𝑖|
min(Nu𝑖, N̂u𝑖)

× 100 (16)

Here, Nu𝑖 represents the Nusselt number derived from the bench-
mark large-eddy simulation (LES), and ̂Nu  denotes the average Nusselt 
𝑖
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Fig. A.1. Grid independence test of the LML case with row spacing of 5.81 m and 𝑈∞ of 3.6 m/s.
Table A.1
Validation of CFD results.
 Row spacing [m] Nu𝑖 N̂u𝑖 𝑒  
 5.81 1735.6 1621.4 7.0% 
 6.54 1679.2 1650.3 1.7% 
 7.26 1621.2 1650.3 1.8% 
 7.99 1578.9 1664.7 5.4% 
 8.72 1551.0 1679.2 8.3% 

number obtained from our CFD model. In both approaches, the panel 
height of 1.52 m is utilized as the characteristic length for calculating 
Nu in the validation scenarios. As indicated in Table  A.1, the relative 
difference for each case is maintained within 8.3%, confirming the 
accuracy and reliability of our CFD model.

Independence test of lacunarity calculation

The independence test for lacunarity calculation is conducted by 
systematically reducing the initial value of 𝑟𝑁 , defined as half the 
minimum dimension of a PV panel, via an adaptive gradient method. 
In our experiments, the value of 𝐿𝑐 remained stable even as 𝑟𝑁  was 
reduced to half its previous value with each iteration, though this 
significantly increased the computation time. For instance, computing 
a single 𝐿𝑐 value takes approximately 30 min when 𝑟𝑁  is reduced to 
one-quarter of its initial size, utilizing a server equipped with an AMD 
Ryzen Threadripper 3970X 32-Core CPU.

To optimize the balance between efficiency and accuracy, we im-
plemented an adaptive gradient mechanism as described in Eq. (17). 
This strategy permits 𝑟𝑁  to initially increase from a low baseline, with 
a decelerating rate of change. In this context, 𝑖 denotes the 𝑖th update 
of 𝑟𝑁 , and 𝑔0 is the predetermined stable gradient value during the test, 
set at 0.8 for our experiments. This method is designed to maintain both 
the accuracy and efficiency of the test. 

𝑔𝑖 =
𝑔0

1 + 𝑒−𝑖
(17)

Consequently, 𝑟𝑁  updates as follows at each time step 𝑖: 

𝑟𝑖𝑁 = 𝑔𝑖 × 𝑟𝑖−1𝑁 (18)

This strategy of initially decreasing 𝑟𝑁  significantly and then grad-
ually reducing the rate of decrease helps to determine a final value 
of 𝑟𝑁  that does not undermine the accuracy of 𝐿𝑐 quantification. This 
approach effectively balances precision with computational efficiency. 
One of the outcomes of the 𝐿𝑐 independence test is illustrated in Fig. 
A.2.

Proof of the universal approximator

The linearization process within the PIML-DCNN model, particularly 
the feedforward propagation of the Reynolds number (Re) without 
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Fig. A.2. Independence test of 𝐿𝑐 for LML configuration with row spacing 6.54 m.

utilizing an activation function, is concisely captured by the following 
equations. These equations illustrate the workings of a linear neural 
network: 
𝑦1 = 𝐰T1Re + 𝑏1 (19)

Nu = 𝐰T2𝑦1 + 𝑏2 (20)

In these equations, 𝐰𝑖 and 𝑏𝑖 represent the weight matrix and 
bias vector of the 𝑖th layer, respectively, [29]. The first layer, named 
Dense4, and the second layer, named Dense5, function collaboratively 
to compute the Nusselt number (Nu) from Re. By integrating Eqs. (19) 
and (20), we derive the comprehensive formula used to calculate Nu: 
Nu = 𝐰T2 (𝐰

T
1Re + 𝑏1) + 𝑏2 (21)

Upon simplification, recognizing that the term 𝐰T2𝑏1 + 𝑏2 constitutes 
a constant, Eq. (21) effectively represents an approximation of a nonlin-
ear relationship involving Re. This approximation is detailed further in 
Eq. (10), demonstrating the model’s capability to linearly approximate 
a nonlinear function through its structure.

Data availability

Data will be made available on request.
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